題目列表(包括答案和解析)
有一項是符合題目要求的.
的值為 ( )
A. B.- C. 。模
一次高中數(shù)學期末考試,選擇題共有個,每個選擇題給出了四個選項,在給出的四個選項中,只有一項是符合題目要求的. 評分標準規(guī)定:對于每個選擇題,不選或多選或錯選得分,選對得分.在這次考試的選擇題部分,某考生比較熟悉其中的個題,該考生做對了這個題.其余個題,有一個題,因全然不理解題意,該考生在給出的四個選項中,隨機選了一個;有一個題給出的四個選項,可判斷有一個選項不符合題目要求,該考生在剩下的三個選項中,隨機選了一個;還有兩個題,每個題給出的四個選項,可判斷有兩個選項不符合題目要求,對于這兩個題,該考生都是在剩下的兩個選項中,隨機選了一個選項.請你根據(jù)上述信息,解決下列問題:
(Ⅰ)在這次考試中,求該考生選擇題部分得分的概率;
(Ⅱ)在這次考試中,設(shè)該考生選擇題部分的得分為,求的數(shù)學期望.
一次高中數(shù)學期末考試,選擇題共有個,每個選擇題給出了四個選項,在給出的四個選項中,只有一項是符合題目要求的. 評分標準規(guī)定:對于每個選擇題,不選或多選或錯選得分,選對得分.在這次考試的選擇題部分,某考生比較熟悉其中的個題,該考生做對了這個題.其余個題,有一個題,因全然不理解題意,該考生在給出的四個選項中,隨機選了一個;有一個題給出的四個選項,可判斷有一個選項不符合題目要求,該考生在剩下的三個選項中,隨機選了一個;還有兩個題,每個題給出的四個選項,可判斷有兩個選項不符合題目要求,對于這兩個題,該考生都是在剩下的兩個選項中,隨機選了一個選項.請你根據(jù)上述信息,解決下列問題:
(Ⅰ)在這次考試中,求該考生選擇題部分得分的概率;
(Ⅱ)在這次考試中,設(shè)該考生選擇題部分的得分為,求的數(shù)學期望.
考試結(jié)束,請將本試題卷和答題卡一并上交。
一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的)
1.設(shè)全集,集合,,則圖中的陰影部分表示的集合為
A. B.
C. D.
2.已知非零向量、滿足,那么向量與向量的夾角為
A. B. C. D.
3.的展開式中第三項的系數(shù)是
A. B. C.15 D.
4.圓與直線相切于點,則直線的方程為
A. B. C. D.
一、
1.C 2.C 3.C 4.D 5.C 6.B 7.C 8.A 9.D 10.C
11.B 12.B
【解析】
11.提示:設(shè)曲線在點處切線傾斜角為,則,由,得,故,所以,故選B.
12.提示:整形結(jié)合.
二、
13. 14. 15.3 16.①③
三、
17.解:(1)
的單調(diào)遞增區(qū)間為
(2)
18.(1)設(shè)乙、丙各自回答對的概率分別是、,根據(jù)題意得:
,解得
(2).
19.解:(1)的解集有且只有一個元素
或
又由得
當時,;
當時,
(2) ①
②
由式①-或②得
.
20.解法一:
(1)設(shè)交于點
平面.
作于點,連接,則由三垂線定理知:是二面角的平面角.
由已知得,
,
∴二面角的大小的60°.
(2)當是中點時,有平面.
證明:取的中點,連接、,則,
,故平面即平面.
又平面,
平面.
解法二:由已知條件,以為原點,以、、為軸、軸、軸建立空間直角坐標系,則
(1),
,設(shè)平面的一個法向量為,
則取
設(shè)平面的一個法向量為,則取.
二面角的大小為60°.
(2)令,則,
,
由已知,,要使平面,只需,即
則有,得當是中點時,有平面.
21.解:(1)① 當直線垂直于軸時,則此時直線方程為,
與圓的兩個交點坐標為和,其距離為,滿足題意.
② 若直線不垂直于軸,設(shè)其方程,即
設(shè)圓心到此直線的距離為,則,得
,
此時所求直線方程為
綜上所述,所求直線為或.
(2)設(shè)點的坐標為點坐標為,則點坐標是
即
又由已知,直線軸,所以,,
點的軌跡議程是,
軌跡是焦點坐標為,長軸為8的橢圓,并去掉兩點.
22.解:,
(1)由題意: 解得.
(2)方程的叛別式,
① 當,即時,,在內(nèi)恒成立,此時在為增函數(shù);
② 當,即或時,
要使在內(nèi)為增函數(shù),只需在內(nèi)有即可,
設(shè),
由得,所以.
由①②可知,若在內(nèi)為增函數(shù),則的取值范圍是.
www.ks5u.com
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com