(II)若對(duì)任意不等式恒成立.求實(shí)數(shù)a的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(I)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;

(II)解關(guān)于x的不等式

 

查看答案和解析>>

已知二次函數(shù)對(duì)任意實(shí)數(shù)x不等式恒成立,且,令.

(I)求的表達(dá)式;

(II)若使成立,求實(shí)數(shù)m的取值范圍;

(III)設(shè),,證明:對(duì),恒有

查看答案和解析>>

        已知函數(shù)定義在區(qū)間,對(duì)任意,恒有

成立,又?jǐn)?shù)列滿足

   (I)在(-1,1)內(nèi)求一個(gè)實(shí)數(shù)t,使得

   (II)求證:數(shù)列是等比數(shù)列,并求的表達(dá)式;

   (III)設(shè),是否存在,使得對(duì)任意恒成立?若存在,求出m的最小值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

已知函數(shù)f(x)定義在區(qū)間,對(duì)任意x,y∈(-1,1),恒有成立,又?jǐn)?shù)列{an}滿足
(I)在(-1,1)內(nèi)求一個(gè)實(shí)數(shù)t,使得
(II)求證:數(shù)列{f(an)}是等比數(shù)列,并求f(an)的表達(dá)式;
(III)設(shè),是否存在m∈N*,使得對(duì)任意n∈N*恒成立?若存在,求出m的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)定義在區(qū)間,對(duì)任意x,y∈(-1,1),恒有成立,又?jǐn)?shù)列{an}滿足
(I)在(-1,1)內(nèi)求一個(gè)實(shí)數(shù)t,使得;
(II)求證:數(shù)列{f(an)}是等比數(shù)列,并求f(an)的表達(dá)式;
(III)設(shè),是否存在m∈N*,使得對(duì)任意n∈N*,恒成立?若存在,求出m的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、選擇題:

1―5  ACBBD    6―10  BCDAC

二、填空題:

11.60    12.       13.―     14.

15.2    16.    17.

三、解答題:

18.解:(I)

20090506

   (II)由于區(qū)間的長(zhǎng)度是為,為半個(gè)周期。

    又分別取到函數(shù)的最小值

所以函數(shù)上的值域?yàn)?sub>。……14分

19.解:(1)該同學(xué)投中于球但未通過(guò)考核,即投藍(lán)四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

   (2)在這次考核中,每位同學(xué)通過(guò)考核的概率為

      ………………10分

    隨機(jī)變量X服從其數(shù)學(xué)期望

  …………14分

20.解:(1)設(shè)FD的中點(diǎn)為G,則TG//BD,而B(niǎo)D//CE,

        當(dāng)a=5時(shí),AF=5,BD=1,得TG=3。

        又CE=3,TG=CE。

        *四邊形TGEC是平行四邊形。      

    *CT//EG,TC//平面DEF,………………4分

       (2)以T為原點(diǎn),以射線TB,TC,TG分別為x,y,z軸,

    建立空間直角坐標(biāo)系,則D(1,0,1),

                  ………………6分

    <strike id="cwqko"><noscript id="cwqko"></noscript></strike>

        則平面DEF的法向量n=(x,y,z)滿足:

      •  

            解之可得又平面ABC的法向量

        m=(0,0,1)

           

           即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

           (3)由P在DE上,可設(shè),……10分

            則

                           ………………11分

            若CP⊥平面DEF,則

            即

         

         

            解之得:                ……………………13分

            即當(dāng)a=2時(shí),在DE上存在點(diǎn)P,滿足DP=3PE,使CP⊥平面DEF!14分

        21.解:(1)因?yàn)?sub>        所以

            橢圓方程為:                          ………………4分

           (2)由(1)得F(1,0),所以。假設(shè)存在滿足題意的直線l,設(shè)l的方程為

           

            代入       ………………6分

            設(shè)   ①

                          ……………………8分

            設(shè)AB的中點(diǎn)為M,則

           

             ……………………11分

            ,即存在這樣的直線l

            當(dāng)時(shí), k不存在,即不存在這樣的直線l;……………………14分

         

         

         

         

        22.解:(I) ……………………2分

            令(舍去)

            單調(diào)遞增;

            當(dāng)單調(diào)遞減。    ……………………4分

            為函數(shù)在[0,1]上的極大值。        ……………………5分

           (II)由

         ①        ………………………7分

        設(shè),

        依題意知上恒成立。

        都在上單調(diào)遞增,要使不等式①成立,

        當(dāng)且僅當(dāng)…………………………11分

           (III)由

        ,則

        當(dāng)上遞增;

        當(dāng)上遞減;

                …………………………16分

         

         


        同步練習(xí)冊(cè)答案