已知直線.⊙ 上的任意一點(diǎn)P到直線的距離為. 查看更多

 

題目列表(包括答案和解析)

已知曲線C上的任意一點(diǎn)P到點(diǎn)F(1,0)的距離比它到直線m:x=-4的距離小3.
(1)求曲線C的方程;
(2)在曲線C上是否存在一點(diǎn)M,它到點(diǎn)F(1,0)與到點(diǎn)A(3,2)的距離之和最?若存在,請(qǐng)求出最小值及M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知曲線C上的任意一點(diǎn)P到點(diǎn)F(1,0)的距離比它到直線m:x=-4的距離小3.
(1)求曲線C的方程;
(2)在曲線C上是否存在一點(diǎn)M,它到點(diǎn)F(1,0)與到點(diǎn)A(3,2)的距離之和最?若存在,請(qǐng)求出最小值及M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知曲線C上的任意一點(diǎn)P到點(diǎn)F(1,0)的距離比它到直線m:x=-4的距離小3.
(1)求曲線C的方程;
(2)在曲線C上是否存在一點(diǎn)M,它到點(diǎn)F(1,0)與到點(diǎn)A(3,2)的距離之和最。咳舸嬖,請(qǐng)求出最小值及M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知直線,一動(dòng)點(diǎn)P到這兩直線的距離的平方和為

   (1)求此動(dòng)點(diǎn)P的軌跡E;

   (2)O為坐標(biāo)原點(diǎn),是否存在與l1平行的直線l3,使l3與E交于不同的兩點(diǎn)A、B,且對(duì)于E上任意一點(diǎn)M都存在成立?如果存在,求出l3的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

已知直線和參數(shù)方程為
x=4-2t
y=t-2
(t為參數(shù)),P是橢圓
x2
4
+y2=1
上任意一點(diǎn),則點(diǎn)P到直線的距離的最大值為( 。
A、
2
10
5
B、
2
5
C、
2
5
5
D、
10
5

查看答案和解析>>

第Ⅰ部分(正卷)

一、填空題:本大題共14小題,每小題5分,計(jì)70分。

1、    2、    3、對(duì)任意使    4、2    5、

6、    7、    8、8      9、        10、40

11、    12、4       13、    14、

二、解答題:本大題共6小題,計(jì)90分。解答應(yīng)寫出必要的文字說明,證明過程或演算步驟,請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi)。

15、解:(1)解:,

,有

解得。                                         ……7分

(2)解法一:       ……11分

             。  ……14分

  解法二:由(1),,得

   

                                        ……10分

于是,

               ……12分

代入得。            ……14分

16、證明:(1)∵

                                          ……4分

(2)令中點(diǎn)為中點(diǎn)為,連結(jié)、

     ∵的中位線

           ……6分   

又∵

     ……8分

     ∴

     ∵為正

         ……10分

     ∴

     又∵

 ∴四邊形為平行四邊形    ……12分

    ……14分

17、解:(1)設(shè)米,,則

                                                ……2分

                                            ……4分

                                            ……5分

(2)                   ……7分

      

     

     此時(shí)                                               ……10分

(3)∵

                       ……11分

當(dāng)時(shí),

上遞增                       ……13分

此時(shí)                                                ……14分

答:(1)

    (2)當(dāng)的長(zhǎng)度是4米時(shí),矩形的面積最小,最小面積為24平方米;

    (3)當(dāng)的長(zhǎng)度是6米時(shí),矩形的面積最小,

最小面積為27平方米。                              ……15分

18、(1)解:①若直線的斜率不存在,即直線是,符合題意。   ……2分

②若直線斜率存在,設(shè)直線,即。

由題意知,圓心以已知直線的距離等于半徑2,即:,

解之得                                                  ……5分

所求直線方程是                            ……6分

(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為

                       ……8分

又直線垂直,由 ……11分

……13分

             為定值。

   故是定值,且為6。                            ……15分

19、解:(1)由題意得,                             ……2分

,    ∴    ……3分

,∴

單調(diào)增函數(shù),                                             ……5分

對(duì)于恒成立。      ……6分

(2)方程;   ∴  ……7分

     ∵,∴方程為                      ……9分

     令,

      ∵,當(dāng)時(shí),,∴上為增函數(shù);

     時(shí),,  ∴上為減函數(shù),    ……12分

     當(dāng)時(shí),                     ……13分

,            

∴函數(shù)在同一坐標(biāo)系的大致圖象如圖所示,

∴①當(dāng),即時(shí),方程無(wú)解。

②當(dāng),即時(shí),方程有一個(gè)根。

③當(dāng),即時(shí),方程有兩個(gè)根。    ……16分

 

 

 

 

 

 

 

 

第Ⅱ部分(附加卷)

一、必做題

21、解:(1)由,

求得,                                ……3分

(2)猜想                                            ……5分

證明:①當(dāng)時(shí),猜想成立。                                 ……6分

②設(shè)當(dāng)時(shí)時(shí),猜想成立,即,          ……7分

則當(dāng)時(shí),有,

所以當(dāng)時(shí)猜想也成立                                  ……9分

③綜合①②,猜想對(duì)任何都成立。                      ……10分

22、解:(1)“油罐引爆”的事件為事件A,其對(duì)立事件,則

答:油罐被引爆的概率為 ……5分

(2)射擊次數(shù)的可能取值為2,3,4,5,

,,

,   ……7分

的分布列為:

2

3

4

5

P

     ……10分

二、選做題(每題10分)(選兩道)

1、證明:因?yàn)锳,M,D,N四點(diǎn)其圓,

  所以,              ……3分

同理,有         ……5分

所以,   ……7分 

,

所以  ……10分

2、解:(1)設(shè)A的一個(gè)特值為,由題意知:

  =0

,          ……2分

當(dāng)時(shí),由 ,得A屬于特征值2的特征向量

當(dāng)時(shí),由

同步練習(xí)冊(cè)答案