(2)對任意給定的n.設(shè).求證數(shù)列是等比數(shù)列.并求出此時(shí)該數(shù)列前10項(xiàng)的和, 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).Sn為數(shù)列{bn}的前n項(xiàng)和.
(1)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)對于給定的實(shí)數(shù)λ,試求數(shù)列{bn}的通項(xiàng)公式,并求Sn
(3)設(shè)0<a<b(a,b為給定的實(shí)常數(shù)),是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).Sn為數(shù)列{bn}的前n項(xiàng)和.
(1)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)對于給定的實(shí)數(shù)λ,試求數(shù)列{bn}的通項(xiàng)公式,并求Sn
(3)設(shè)0<a<b(a,b為給定的實(shí)常數(shù)),是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).Sn為數(shù)列{bn}的前n項(xiàng)和.
(1)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)對于給定的實(shí)數(shù)λ,試求數(shù)列{bn}的通項(xiàng)公式,并求Sn
(3)設(shè)0<a<b(a,b為給定的實(shí)常數(shù)),是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).Sn為數(shù)列{bn}的前n項(xiàng)和.
(1)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)對于給定的實(shí)數(shù)λ,試求數(shù)列{bn}的通項(xiàng)公式,并求Sn
(3)設(shè)0<a<b(a,b為給定的實(shí)常數(shù)),是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).Sn為數(shù)列{bn}的前n項(xiàng)和.
(1)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)對于給定的實(shí)數(shù)λ,試求數(shù)列{bn}的通項(xiàng)公式,并求Sn
(3)設(shè)0<a<b(a,b為給定的實(shí)常數(shù)),是否存在實(shí)數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案