為確保信息安全.信息需加密傳輸.發(fā)送方由明文密文.接收方由密文明文.已知加密規(guī)則為:明文對應(yīng)密文.例如.明文對應(yīng)密文.當(dāng)接收方收到密文時.則解密得到的明文為 (D) 查看更多

 

題目列表(包括答案和解析)

9、為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則如圖所示,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時,則解密得到的明文為
6,4,1,7

查看答案和解析>>

為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時,則解密得到的明文為( 。
A、4,6,1,7B、7,6,1,4C、6,4,1,7D、1,6,4,7

查看答案和解析>>

23、為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則如圖所示,例如,明文1,2,3,4對應(yīng)密文5,7,18,16. 當(dāng)接收方收到密文14,9,23,28時,則解密得到的明文為
6,4,1,7

查看答案和解析>>

為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接受方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d.例如明文1,2,3,4對應(yīng)加密文5,7,18,16,當(dāng)接受方收到密文14,9,23,28時,則解密得明文為(  )

查看答案和解析>>

為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時,則解密得到的明文為
 

查看答案和解析>>

1、A   2、C   3、B   4、D    5、A    6、D    7、C    8、B    9、A    10、D

11、            12、 

13、或等        14、

15、(1),   ----- (′)

(2)當(dāng)時,,當(dāng)時,,

由已知得,---------------------------------------------()

故當(dāng)即時,----()

 

16、中:有兩個不等的負(fù)根,,得,----()

中:無實(shí)根,得---()

命題與命題有且只有一個為真,

若真假,則,----------()

若假真,則,---------()

綜上得-----------()

 

17、(1),由題意知,即, ∴,

得,

令得 ,或 (舍去)

當(dāng)時,; 當(dāng)時, ;

  當(dāng)時,有極小值,又 

∴ 在上的最小值是,最大值是。----------()

(2)若在上是增函數(shù),則對恒成立,

   ∴ ,   (當(dāng)時,取最小值)。

  ∴ ---------------------------------()

  

18、(1)由題意可設(shè),則,,

,點(diǎn)在函數(shù)的圖像上,

,當(dāng)時,,時,,

    。-------------------------------------------------------------()

   (2),

     

 

由對所有都成立得,,故最小的正整數(shù)。--()

 

19、(1)令得,令,得,

,為奇函數(shù),

又,,在上是單調(diào)函數(shù),故由 知在上是單調(diào)遞增函數(shù)。------------------------------------------------------------------------------------()

(2)不等式即,由(1)知:,,即,

得-------------------------------------------------

  (3)若對恒成立,

即對恒成立,

  即對恒成立,

 由在上是單調(diào)遞增函數(shù)得

即對恒成立,

    ,得----------------------()

 

20、(1)數(shù)列是公比為的等比數(shù)列,且,

      ,數(shù)列隔項(xiàng)成等比, 

      -------------------------------------------------------------()

   (2),當(dāng)時,

          ,

   當(dāng) 時,,當(dāng)時,

  。

 

 

 

 


同步練習(xí)冊答案