題目列表(包括答案和解析)
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
某市甲、乙兩校高二級學(xué)生分別有1100人和1000人,為了解兩校全體高二級學(xué)生期末統(tǒng)考的數(shù)學(xué)成績情況,采用分層抽樣方法從這兩所學(xué)校共抽取105名高二學(xué)生的數(shù)學(xué)成績,并得到成績頻數(shù)分布表如下,規(guī)定考試成績在[120,150]為優(yōu)秀.
甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
頻數(shù) | 2 | 3 | 10 | 15 | 15 | x | 3 | 1 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
頻數(shù) | 1 | 2 | 9 | 8 | 10 | 10 | y | 3 |
(1)求表中x與y的值;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2x2列聯(lián)表,問是否有99%的把握認(rèn)為學(xué)生數(shù)學(xué)成績優(yōu)秀與所在學(xué)校有關(guān)?
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | a | b | a+b |
非優(yōu)秀 | c | d | c+d |
總計(jì) | a+c | b+d | n |
參考公式:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,
(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和;
(2)求數(shù)列的前n項(xiàng)和;
(3)證明:不等式 對任意的,都成立.
【解析】第一問中,由于所以
兩式作差,然后得到
從而得到結(jié)論
第二問中,利用裂項(xiàng)求和的思想得到結(jié)論。
第三問中,
又
結(jié)合放縮法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正項(xiàng)數(shù)列,∴ ∴
又n=1時,
∴ ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 對任意的,都成立.
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點(diǎn)為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設(shè)計(jì)周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對花壇的邊緣進(jìn)行裝飾時,已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,當(dāng)為何值時,取得最大值?
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點(diǎn)為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設(shè)計(jì)周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對花壇的邊緣進(jìn)行裝飾時,已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,當(dāng)為何值時,取得最大值?
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com