∴AO=1.DO= 查看更多

 

題目列表(包括答案和解析)

如圖(1),矩形ABCD中,已知AB=2,,MN分別為AD和BC的中點(diǎn),對(duì)角線(xiàn)BD與MN交于O點(diǎn),沿MN把矩形ABNM折起,使平面ABNM與平面MNCD所成角為60°,如圖(2)

(Ⅰ)求證∶BO⊥DO;

(Ⅱ)求AO與平面BOD所成角的正弦值.

查看答案和解析>>

如圖,某海域內(nèi)的島嶼上有一直立信號(hào)塔AB,設(shè)AB延長(zhǎng)線(xiàn)與海平面交于點(diǎn)O.測(cè)量船在點(diǎn)O的正東方向點(diǎn)C處,測(cè)得塔頂A的仰角為30°,然后測(cè)量船沿CO方向航行至D處,當(dāng)CD=100(
3
-1)米時(shí),測(cè)得塔頂A的仰角為45°.
(1)求信號(hào)塔頂A到海平面的距離AO;
(2)已知AB=52米,測(cè)量船在沿CO方向航行的過(guò)程中,設(shè)DO=x,則當(dāng)x為何值時(shí),使得在點(diǎn)D處觀測(cè)信號(hào)塔AB的視角∠ADB最大.

查看答案和解析>>

如圖,已知空間四邊形ABCD中,O是對(duì)角線(xiàn)BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=
2

(1)求證:CO⊥AO;
(2)求證:AO⊥平面BCD;
(3)若G為△ADC的重心,試在線(xiàn)段DO上確定一點(diǎn)F,使得GF∥平面AOC.

查看答案和解析>>

如圖,邊長(zhǎng)為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.

(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一問(wèn)中,利用線(xiàn)線(xiàn)垂直,得到線(xiàn)面垂直,然后利用性質(zhì)定理得到線(xiàn)線(xiàn)垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二問(wèn)中,作MNAE,垂足為N,連接DN

因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

,因?yàn)锳ODM ,DM平面AOE

因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DOEO,

AO=DO=2.AODM

因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足為N,連接DN

因?yàn)锳OEO, DOEO,EO平面AOD,所以EODM

,因?yàn)锳ODM ,DM平面AOE

因?yàn)镸NAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值為

 

查看答案和解析>>

如圖,已知空間四邊形ABCD中,O是對(duì)角線(xiàn)BD的中點(diǎn),數(shù)學(xué)公式
(1)求證:CO⊥AO;
(2)求證:AO⊥平面BCD;
(3)若G為△ADC的重心,試在線(xiàn)段DO上確定一點(diǎn)F,使得GF∥平面AOC.

查看答案和解析>>


同步練習(xí)冊(cè)答案