直線l的方程為y=2(x-1),即 2x-y-20. 查看更多

 

題目列表(包括答案和解析)

已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求:當(dāng)m為何值時(shí)
(1)直線平分圓;
(2)直線與圓相切;
(3)直線與圓有兩個(gè)公共點(diǎn).

查看答案和解析>>

當(dāng)函數(shù)的自變量取值區(qū)間與值域區(qū)間相同時(shí),我們稱這樣的區(qū)間為該函數(shù)的保值區(qū)間.函數(shù)的保值區(qū)間有(-∞,m]、[m,n]、[n,+∞)三種形式.以下四個(gè)圖中:虛線為二次函數(shù)圖象的對(duì)稱軸,直線l的方程為y=x,從圖象可知,下列四個(gè)二次函數(shù)中有2個(gè)保值區(qū)間的函數(shù)是( 。

查看答案和解析>>

(2007•長寧區(qū)一模)設(shè)直線l的方程為y=kx-1,等軸雙曲線C:x2-y2=a2(a>0)的中心在原點(diǎn),右焦點(diǎn)坐標(biāo)為( 
2
,0).
(1)求雙曲線方程;
(2)設(shè)直線l與雙曲線C的右支交于不同的兩點(diǎn)A,B,記AB中點(diǎn)為M,求k的取值范圍,并用k表示M點(diǎn)的坐標(biāo).
(3)設(shè)點(diǎn)Q(-1,0),求直線QM在y軸上截距的取值范圍.

查看答案和解析>>

斜率為2的直線l與雙曲線
x2
3
-
y2
2
=1交于A,B兩點(diǎn),且|AB|=4,則直線l的方程為
y=2x±
210
3
y=2x±
210
3

查看答案和解析>>

(2012•商丘二模)已知圓C1的方程為x2+(y-2)2=1,定直線l的方程為y=-1.動(dòng)圓C與圓C1外切,且與直線l相切.
(Ⅰ)求動(dòng)圓圓心C的軌跡M的方程;
(Ⅱ)斜率為k的直線m與軌跡M相切于第一象限的點(diǎn)P,過點(diǎn)P作直線m的垂線恰好經(jīng)過點(diǎn)A(0,6),并交軌跡M與另一點(diǎn)Q,記S為軌跡M與直線PQ圍成的封閉圖形的面積,求S的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案