14.502.令 查看更多

 

題目列表(包括答案和解析)

某次國際象棋友誼賽在中國隊和烏克蘭隊之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分,根據(jù)以往戰(zhàn)況,每局中國隊贏的概率為
1
2
,烏克蘭隊贏的概率為
1
3
,且每局比賽輸贏互不影響.若中國隊第n局的得分記為an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若規(guī)定:當(dāng)其中一方的積分達(dá)到或超過4分時,比賽不再繼續(xù),否則,繼續(xù)進(jìn)行.設(shè)隨機(jī)變量ξ表示此次比賽共進(jìn)行的局?jǐn)?shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

函數(shù)f(x)=
x
1-x
(0<x<1)
的反函數(shù)為f-1(x),數(shù)列{an}和{bn}滿足:a1=
1
2
,an+1=f-1(an),函數(shù)y=f-1(x)的圖象在點(n,f-1(n))(n∈N*)處的切線在y軸上的截距為bn
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{
bn
a
2
n
-
λ
an
}
;的項中僅
b5
a
2
5
-
λ
a5
最小,求λ的取值范圍;
(3)令函數(shù)g(x)=[f-1(x)+f(x)]- 
1-x2
1+x2
,0<x<1.?dāng)?shù)列{xn}滿足:x1=
1
2
,0<xn<1且xn+1=g(xn),(其中n∈N*).證明:
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
2
+1
8

查看答案和解析>>

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”,有如下解法:
解:由ax2-bx+c>0?a-b(
1
x
)+c(
1
x
)2>0
,令y=
1
x
,則y∈(
1
2
, 1)
,所以不等式cx2-bx+a>0的解集為(
1
2
, 1)

參考上述解法,已知關(guān)于x的不等式
k
x+a
+
x+b
x+c
<0
的解集為(-2,-1)∪(2,3),求關(guān)于x的不等式
kx
ax-1
+
bx-1
cx-1
<0
的解集.

查看答案和解析>>

19、一次國際乒乓球比賽中,甲、乙兩位選手在決賽中相遇,根據(jù)以往經(jīng)驗,單局比賽甲選手勝乙選手的概率為0.6,本場比賽采用五局三勝制,即先勝三局的選手獲勝,比賽結(jié)束.設(shè)全局比賽相互間沒有影響,令ξ為本場比賽甲選手勝乙選手的局?jǐn)?shù)(不計甲負(fù)乙的局?jǐn)?shù)),求ξ的概率分布和數(shù)學(xué)期望(精確到0.0001).

查看答案和解析>>

已知函數(shù)f(x)=x2+ax-lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;
(2)令g(x)=f(x)-x2,是否存在實數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案