題目列表(包括答案和解析)
A.4 B.3 C.2 D.1
A.(0,4) | B.(-2,2) | C.(-∞,0)∪(4,+∞) | D.(-∞,-2)∪(2,+∞) |
(1)求 f(x)的表達式;
(2)是否存在正實數(shù)p,使 F(x)在(-∞,f(2))上是增函數(shù),在 (f(2),0)上是減函數(shù)?若存在,求出p;若不存在,請說明理由.
一、選擇題 B文(B)ACDB CACB(文A)B AD
二、填空題 13. 14.1200 15. (理)3(文)1 16.2
三、解答題
17. 解:,且.
① ………………3分
②
又A為三角形的內(nèi)角,所以sinA= ………………6分
………………9分
………………12分
18.解:由題意p,q中有且僅有一個為真,一個為假,…………2分
由p真m>2,……5分
q真<01<m<3, ……7分
所以,若p假q真,則1<m≤2……9分
若p真q假,則m≥3……11分
綜上所述:m∈(1,2)∪[3,+∞].…………12分
19.證明(1):過點D作
,垂足為H.連結HB、GH,
所以
又,且=
所以
由三垂線定理得…………(理、文)6分
(2)(理)
知
所以
連結DG,則垂足G,所以…………9分
作垂足為M,連結DM,則為二面角D-BF-C的平面角
所以,在中,
.…………12分
(注:也可用空間向量來解,步驟略)
(文)
又∵AD∥面BFC
所以=
= …………9分
=0,得x=
所以x=時有最大值,其值為.…………12分
20.解:(1)由已知條件分析可知,在甲、乙兩地分別投資5萬元的情況下欲獲利12.5萬元,須且必須兩地都不發(fā)生洪水.
故所求的概率為P=(1-0.6)×(1-0.5)=0.2………………(理)5分(文)6分
(2)設投資1萬元在甲地獲利萬元,則的可能取值為15萬元和-5萬元.
又此地發(fā)生洪水的概率為0.6
故投資1萬元在甲地獲利的期望為1.5×0.6+(-0.5)×0.4=0.7萬元.…………(理)7分
同理在乙地獲利的期望為1×0.5+(-0.2)×0.5=0.4萬元. …………(理)8分
設在甲、乙兩地的投資分別為x,y萬元,
則平均獲利z=0.7x+0.4y萬元.……(理)9分
(則獲得的利潤z=1.5x+y萬元.…………(文)7分)
其中x,y滿足:
如右圖,因為A點坐標為(6,4)
所以,在甲、乙兩地的投資分別為6、4萬元時,
可平均獲利最大,
其最大值為(理)5.8萬元、(文)13萬元. …………(理、文)12分
(注:若不用線性規(guī)劃的格式求解,只要結果正確同樣給分)
21.解:(1)設平移后的右焦點為P(x,y),
易得已知橢圓的右焦點為F2(3,0), ………………1分
(2)易知F(0,為曲線C上的焦點,又
所以A,B,F三點共線………………5分
設
………………12分
(文)21.解:(1)當n為偶數(shù)時,因為f(-x)=(-x)n+1=xn+1=f(x),即函數(shù)f(x)為偶函數(shù)
所以其圖象關于y軸對稱………………2分
當n為奇數(shù)時,因為f(-x)=(-x)n+1=-xn+1,所以
所以其圖象關于點(0,1)中心對稱. ………………4分
(或:令g(x)=f(x)-1=xn,所以g(-x)=(-x)n=-xn=-g(x) ,即g(x)為奇函數(shù),
所以g(x)的圖象關于原點對稱,故函數(shù)f(x)的圖象關于點(0,1)中心對稱.)………4分
(2)=…………6分
所以…………#
當時;…………8分
當時,#式兩邊同乘以x,得…*
*式-#式可得,…………12分
22.(理)解:(1)易得f(x)=+ 的定義域為[0,n]
令,得x=------------1分
所以,函數(shù)f(x)在(0,)上單調遞增,在(,n)單調遞減,
所以=------------3分
由于,所以-------------5分
因為 ,
所以--------8分
(2)令
所以=------------10分
由
;
所以
-------------12分
又,所以
相除得,由得,所以
最大 -----------14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com