題目列表(包括答案和解析)
如圖,在梯形ABCD中,,四邊形ACFE為矩形,平面平面ABCD,CF=1.
(I)求證:平面ACFE;
(II)點(diǎn)M在線段EF上運(yùn)動(dòng),設(shè)平面MAB與平面FCB所成二面角的平面角為的取值范圍.
(12分)如圖,在梯形ABCD中,平面平面ABCD,四邊形ACFE是矩形,AE=a,點(diǎn)M在線段EF上.
(Ⅰ)求證:平面ACFE;
(Ⅱ)當(dāng)EM為何值時(shí),平面BDF?證明你的結(jié)論;
(Ⅲ)求二面角B―EF―D的大小.
如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四邊形ACFE是矩形,AE=a.
(1)求證:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.
1.B 2.D 3.A 4.A 5.A 6.B 7.B 8.B 9.C 10.C
11. 12.4 13.2.442 14. 15.9,15
16.(Ⅰ),∴,
∴,∴
(Ⅱ)
,∴,
∴
17.(Ⅰ)從4名運(yùn)動(dòng)員中任取兩名,其靶位號(hào)與參賽號(hào)相同,有種方法,另2名運(yùn)動(dòng)員靶位號(hào)與參賽號(hào)均不相同的方法有1種,所以恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與參賽號(hào)相同的概率為
(Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524
②
所以2號(hào)射箭運(yùn)動(dòng)員的射箭水平高.
18.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.∴橢圓C的方程為
(Ⅱ),設(shè)點(diǎn),則
∴,∵,∴,∴∴的最小值為6.
19.(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴平面ACFE.
(Ⅱ)當(dāng)時(shí),平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則
∵而,∴∴MFAN,
∴四邊形ANFM是平行四邊形. ∴
又∵平面BDF,平面BDF. ∴平面BDF.
(Ⅲ)取EF中點(diǎn)G,EB中點(diǎn)H,連結(jié)DG、GH、DH,∵DE=DF,∴ ∵平面ACFE,∴ 又∵,∴又∵,∴
∴是二面角B―EF―D的平面角.
在△BDE中∴∴,
∴又∴在△DGH中,
由余弦定理得即二面角B―EF―D的大小為
20.(Ⅰ)設(shè),,
∴在單調(diào)遞增.
(Ⅱ)當(dāng)時(shí),,又,,即;
當(dāng)時(shí),,,由,得或.
的值域?yàn)?sub>
(Ⅲ)當(dāng)x=0時(shí),,∴x=0為方程的解.
當(dāng)x>0時(shí),,∴,∴
當(dāng)x<0時(shí),,∴,∴
即看函數(shù)
與函數(shù)圖象有兩個(gè)交點(diǎn)時(shí)k的取值范圍,應(yīng)用導(dǎo)數(shù)畫出的大致圖象,
∴,∴
21.(Ⅰ)當(dāng)時(shí), ,∴,令 有x=0,
當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增.
∴∴;
(Ⅱ)∵,∴∴
∴為首項(xiàng)是1、公比為的等比數(shù)列. ∴∴;
(Ⅲ)∵,由(1)知,
∴,即證.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com