(Ⅱ)若上的動點.求證, 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)過x軸上的動點T(t,0),引拋物線y=x2+1兩條切線TP,TQ,P,Q為切點.
(Ⅰ)求證:直線PQ過定點N,并求出定點N坐標;
(Ⅱ)若t≠0,設(shè)弦PQ的中點為M,試求S△OTM|OT|的最小值(O為坐標原點).

查看答案和解析>>

過x軸上的動點A(a,0)引拋物線y=x2+1的兩切線AP,AQ.P,Q為切點.
(I)求切線AP,AQ的方程;
(Ⅱ)求證直線PQ過定點;
(III)若a≠0,試求
S△APQ|OA|
的最小值.

查看答案和解析>>

過x軸上的動點A(a,0)的拋物線y=x2+1引兩切線AP、AQ,P、Q為切點.
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值;
(2)求證:直線PQ過定點;
(3)若a≠0,試求S△APQ:|OA|的最小值.

查看答案和解析>>

過直線上的動點作拋物線的兩切線,為切點.

(1)若切線的斜率分別為,求證:為定值;

(2)求證:直線過定點.

 

查看答案和解析>>

過x軸上的動點T(t,0),引拋物線y=x2+1兩條切線TP,TQ,P,Q為切點.
(Ⅰ)求證:直線PQ過定點N,并求出定點N坐標;
(Ⅱ)若t≠0,設(shè)弦PQ的中點為M,試求S△OTM|OT|的最小值(O為坐標原點).

查看答案和解析>>

一、選擇題:本大題共有12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項正確的

 

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

C

D

D

A

B

B

C

B

A

C

 

二、填空題:本大題共4小題,每小題4分,共16分,把答案填在答題卡的相應(yīng)位置。

13.(1,0)     14.       15.1      16.②③

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

 

   解:(Ⅰ)由

  

       

        ……………………………………4分

     又因為

     解得…………………………………………5分

     ………………………………………6分

(Ⅱ)在,

 

        。……………………………………………9分

,

,

又由(Ⅰ)知

取得最大值時,為等邊三角形. …………………………12分

 

 

18.(本小題滿分12分)

解:(Ⅰ)設(shè)抽取的樣本為名學(xué)生的成績,

則由第一行中可知

;

②處的數(shù)值為;

③處的數(shù)值為…………4分

   (Ⅱ)成績在[70,80分的學(xué)生頻率為0.2,成績在[80.90分的學(xué)生頻率為0.32,

所以成績在[70.90分的學(xué)生頻率為0.52,……………………………………6分

由于有900名學(xué)生參加了這次競賽,

所以成績在[70.90分的學(xué)生約為(人)………………8分

   (Ⅲ)利用組中值估計平均為

…………12分

 

19.(本小題滿分12分)

解:(I)由幾何體的三視圖可知,低面ABCD是邊長為4的正方形,

,…………………………………3分

,

………………6分

   (Ⅱ)連,

,

°

°

………………10分

 

……………………………………………………………………12分

 

20.(本小題滿分12分)

解:(I)10年后新建住房總面積為

    !3分

    設(shè)每年拆除的舊住房為………………5分

    解得,即每年拆除的舊住房面積是…………………………………6分

(Ⅱ)設(shè)第年新建住房面積為,則=

所以當;…………………………………………9分

   

……………………………………12分

 

21.(本小題滿分12分)

解:(Ⅰ)由題意可知,可行域是以為頂點的三角形,因為

    故,

    為直徑的圓,

    故其方程為………………………………………………3分

    設(shè)橢圓的方程為,

   

    又.

    故橢圓………………………………………5分

   (Ⅱ)直線始終與圓相切。

    設(shè)。

    當

    若

                ;

    若

                 ;

    即當……………………………7分

    當時,

    。

    因此,點Q的坐標為。

    ……………10分

   

    當

    。

    綜上,當,…………12分

 

22.(本小題滿分14分)

解:(I)(1)

    !1分

    處取得極值,

    …………………………………………………2分

    即

    ………………………………………4分

   (ii)在,

    由

          

          

    ;

    當;

    ;

    .……………………………………6分

    面

    ,

    且

    又

    ,

   

    ……………9分

   (Ⅱ)當,

    ①

    ②當時,

    ,

   

    ③

    從面得;

    綜上得,.………………………14分

 

 


同步練習冊答案