即[kp+,kp+] 13分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問(wèn)中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問(wèn)中,∵xÎ[0, ],∴2x-Î[-,],

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,

當(dāng)2x-, 即x=時(shí),f(x)max=1

第三問(wèn)中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構(gòu)造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,        ……………………8分

當(dāng)2x-, 即x=時(shí),f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

設(shè)x、y∈R+,S=x+y,P=xy,以下四個(gè)命題中正確命題的序號(hào)是
③④
③④
.(把你認(rèn)為正確的命題序號(hào)都填上)
①若P為定值m,則S有最大值2
m
;②若S=P,則P有最大值4;③若S=P,則S有最小值4;④若S2≥kP總成立,則k的取值范圍為k≤4.

查看答案和解析>>

給定的拋物線y2=2px(p>0),在x軸上是否存在一點(diǎn)K,使得對(duì)于拋物線上任意一條過(guò)K的弦PQ,均有
1
|KP|2
+
1
|KQ|2
為定值,若存在,求出點(diǎn)K及定值;若不存在,說(shuō)明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線AB⊥x軸與點(diǎn)C,|
OC
|=4
,
CD
=3
DO
,動(dòng)點(diǎn)M到直線AB的距離是它到點(diǎn)D的距離的2倍.
(I)求點(diǎn)M的軌跡方程
(II)設(shè)點(diǎn)K為點(diǎn)M的軌跡與x軸正半軸的交點(diǎn),直線l交點(diǎn)M的軌跡于E,F(xiàn)兩點(diǎn)(E,F(xiàn)與點(diǎn)K不重合),且滿足
KE
KF
.動(dòng)點(diǎn)P滿足2
OP
=
OE
+
OF
,求直線KP的斜率的取值范圍.

查看答案和解析>>

設(shè)x、y∈R+,S=x+y,P=xy,以下四個(gè)命題中正確命題的序號(hào)是_________________.(把你認(rèn)為正確的命題序號(hào)都填上)

①若P為定值m,則S有最大值;

②若S=P,則P有最大值4;

③若S=P,則S有最小值4;

④若S2≥kP總成立,則k的取值范圍為k≤4.

查看答案和解析>>


同步練習(xí)冊(cè)答案