6.對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)(.).(.).定義它們之間的一種“距離 :||=??+??.給出下列三個(gè)命題:①若點(diǎn)C在線段AB上.則|AC|+|CB|=|AB|, 查看更多

 

題目列表(包括答案和解析)

對(duì)于平面直角坐標(biāo)系內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),A(x1,y1),B(x2,y2)定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,||AC||+||CB||>||AB||;
③在△ABC中,若∠A=90°,則||AB||2+||AC||2=||BC||2
其中錯(cuò)誤的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

(08年雅禮中學(xué)一模理)對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn))、,),定義它們之間的一種“距離”:‖‖=+.給出下列三個(gè)命題:

①若點(diǎn)C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;

②在△ABC中,若∠C=90°,則‖AC+‖CB=‖AB;

③在△ABC中,‖AC‖+‖CB‖>‖AB‖.

其中真命題的個(gè)數(shù)為                                                    (   )

A  0                B  1                 C  2             D  3

查看答案和解析>>

(08年石景山區(qū)統(tǒng)一測(cè)試)對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn),)、,),定義它們之間的一種“距離”:‖‖=+.給出下列三個(gè)命題:

①若點(diǎn)C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;

②在△ABC中,若∠C=90°,則‖AC+‖CB=‖AB;

③在△ABC中,‖AC‖+‖CB‖>‖AB‖.

其中真命題的個(gè)數(shù)為(   )

A.              B.              C.              D.

查看答案和解析>>

精英家教網(wǎng)如圖揭示了一個(gè)由區(qū)間(0,1)到實(shí)數(shù)集R上的對(duì)應(yīng)過(guò)程:區(qū)間(0,1)內(nèi)的任意實(shí)數(shù)m與數(shù)軸上的線段AB(不包括端點(diǎn))上的點(diǎn)M一一對(duì)應(yīng)(圖一),將線段AB圍成一個(gè)圓,使兩端A,B恰好重合(圖二),再將這個(gè)圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1)(圖三).圖三中直線AM與x軸交于點(diǎn)N(n,0),由此得到一個(gè)函數(shù)n=f(m),則下列命題中正確的序號(hào)是( 。
(1)f(
1
2
)=0;     
(2)f(x)是偶函數(shù);   
(3)f(x)在其定義域上是增函數(shù);
(4)y=f(x)的圖象關(guān)于點(diǎn)(
1
2
,0)對(duì)稱.
A、(1)(3)(4)
B、(1)(2)(3)
C、(1)(2)(4)
D、(1)(2)(3)(4)

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=1與x軸正半軸的交點(diǎn)為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點(diǎn)F為右焦點(diǎn)、短半軸長(zhǎng)為b(b>0,b為常數(shù))的橢圓為D.
(1)求⊙C和橢圓D的標(biāo)準(zhǔn)方程;
(2)當(dāng)b=1時(shí),求證:橢圓D上任意一點(diǎn)都不在⊙C的內(nèi)部;
(3)已知點(diǎn)M是橢圓D的長(zhǎng)軸上異于頂點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)M且與x軸不垂直的直線交橢圓D于P、Q兩點(diǎn)(點(diǎn)P在x軸上方),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為N,設(shè)直線QN交x軸于點(diǎn)L,試判斷
OM
OL
是否為定值?并證明你的結(jié)論.

查看答案和解析>>

一、選擇題:

ADBAA    BCCDC

二、填空題:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

三、解答題:

16.解:(Ⅰ)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

17.解:(Ⅰ)第一天通過(guò)檢查的概率為,       ………………………2分

第二天通過(guò)檢查的概率為,                  …………………………4分

由相互獨(dú)立事件得兩天全部通過(guò)檢查的概率為.        ………………6分

(Ⅱ)第一天通過(guò)而第二天不通過(guò)檢查的概率為,    …………8分

第二天通過(guò)而第一天不通過(guò)檢查的概率為,      ………………10分

由互斥事件得恰有一天通過(guò)檢查的概率為.     ……………………12分

 

18.解:方法一

(Ⅰ)取的中點(diǎn),連結(jié),由,又,故,所以即為二面角的平面角.

在△中,,,

由余弦定理有

,

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點(diǎn)到平面的距離即為△的邊上的高.

.                              …(12分)

 

19.解:(Ⅰ)設(shè)

則   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)當(dāng)an=n時(shí),恒等式為[S(1,n)]2=S(3,n)

證明:

相減得:

相減得:

                                         ………………………………13分

20.解:(Ⅰ)∵,∴

又∵,∴,

,

∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

當(dāng)的斜率為0時(shí),顯然=0,滿足題意,

當(dāng)的斜率不為0時(shí),設(shè)方程為

代入橢圓方程整理得:

,

          ,

,從而

綜合可知:對(duì)于任意的割線,恒有.                ………(8分)

(Ⅱ),

即:,

當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

∴三角形△ABF面積的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分

 

 

 

雅禮中學(xué)08屆高三第八次質(zhì)檢數(shù)學(xué)(文科)試題參考答案

 

一、選擇題:

ADBAA    BCCDC

 

二、填空題:

11. ;        12. ;      13

14(i)  ③⑤     (ii)  ②⑤         15.(i)7;     (ii).

 

三、解答題:

 

16.解:(Ⅰ)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(Ⅱ)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

 

17.解:(Ⅰ)第一天通過(guò)檢查的概率為,       ………………………2分

第二天通過(guò)檢查的概率為,                  …………………………4分

由相互獨(dú)立事件得兩天全部通過(guò)檢查的概率為.        ………………6分

(Ⅱ)第一天通過(guò)而第二天不通過(guò)檢查的概率為,    …………8分

第二天通過(guò)而第一天不通過(guò)檢查的概率為,      ………………10分

由互斥事件得恰有一天通過(guò)檢查的概率為.     ……………………12分

 

 

 

 

 

18.解:方法一

(Ⅰ)取的中點(diǎn),連結(jié),由,又,故,所以即為二面角的平面角.

在△中,,,

由余弦定理有

,

 

所以二面角的大小是.                              (6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點(diǎn)到平面的距離即為△的邊上的高.

.                              …(12分)

 

19.解:(Ⅰ)設(shè)

則   ……①

     ……②

∴②-①得  2d2=0,∴d=p=0

                                            …………6分

(Ⅱ)當(dāng)an=n時(shí),恒等式為[S(1,n)]2=S(3,n)

證明:

相減得:

相減得:

                                         ………………………………13分

 

20.解:(Ⅰ)∵,∴,

又∵,∴,

∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

當(dāng)的斜率為0時(shí),顯然=0,滿足題意,

當(dāng)的斜率不為0時(shí),設(shè)方程為,

代入橢圓方程整理得:

,

          ,

,從而

綜合可知:對(duì)于任意的割線,恒有.                ………(8分)

(Ⅱ),

即:

當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

∴三角形△ABF面積的最大值是.                 ………………………………(13分)

 

21.解:(Ⅰ)              ……………………………………………4分

(Ⅱ)或者……………………………………………8分

(Ⅲ)略                                        ……………………………………13分


同步練習(xí)冊(cè)答案