16.對于函數(shù), 給出下列四個命題: 查看更多

 

題目列表(包括答案和解析)

對于函數(shù), 給出下列四個命題:

① 存在, 使;

② 存在, 使恒成立;

③ 存在, 使函數(shù)的圖象關于坐標原點成中心對稱;

④ 函數(shù)f(x)的圖象關于直線對稱;

⑤ 函數(shù)f(x)的圖象向左平移就能得到的圖象

其中正確命題的序號是                  .  

 

查看答案和解析>>

對于函數(shù)給出下列四個命題:

①該函數(shù)是以π為最小正周期的周期函數(shù);

②當且僅當時,該函數(shù)取得最小值是-1;

③該函數(shù)圖象關于對稱;

④當且僅當

其中正確命題的序號是_____________(請將所有正確命題的序號都填上)

 

查看答案和解析>>

對于函數(shù)給出下列四個命題:

①該函數(shù)是以π為最小正周期的周期函數(shù);

②當且僅當時,該函數(shù)取得最小值是-1;

③該函數(shù)圖象關于對稱;

④當且僅當

其中正確命題的序號是___________(請將所有正確命題的序號都填上)

 

查看答案和解析>>

對于函數(shù),給出下列四個命題:
①存在, 使;
②存在, 使恒成立;
③存在, 使函數(shù)的圖象關于坐標原點成中心對稱;
④函數(shù)f(x)的圖象關于直線對稱;
⑤函數(shù)f(x)的圖象向左平移就能得到的圖象.
其中正確命題的序號是                 

查看答案和解析>>

對于函數(shù) 給出下列四個命題:

①     該函數(shù)是以為最小正周期的周期函數(shù);

② 當且僅當時,該函數(shù)取得最小值是-1;

③ 該函數(shù)的圖象關于對稱;

④當且僅當時,

其中正確命題的序號是               (請將所有正確命題的序號添上)

查看答案和解析>>

一、選擇題:每小題5分,滿分60.

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空題:每小題5分,滿分20.

13.

14. 

15.

16.①③④

三、解答題

17.設兩個實數(shù)為a,b,,,建立平面直角坐標系aOb, 則點在正方形OABC內       ……… 2分

(Ⅰ) 記事件A“兩數(shù)之和小于1.2”,即,則滿足條件的點在多邊形OAEFC內

所以                                    ……… 6分

(Ⅱ) 記事件B“兩數(shù)的平方和小于0.25”,則滿足條件的點在扇形內

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范圍是         ………12分

19.(Ⅰ)連接,交,易知、中點,故在△中,為邊的中位線,故,平面,平面,所以∥平面            ……… 5分

(Ⅱ)在平面內過點,垂足為H,

∵平面⊥平面,且平面∩平面,

⊥平面,∴,                                 ……… 8分

又∵中點,∴

⊥平面,∴,又∵,

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各項均為正數(shù)的等差數(shù)列,且公差

 ∴           ……… 3分

為常數(shù),∴是等差數(shù)列           ……… 5分

(Ⅱ)∵,∴

是公差為1的等差數(shù)列                                       ……… 7分

,∴       ……… 9分

時,                                   ………10分

時,

綜上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由橢圓的對稱性知:PRQS為菱形,原點O到各邊距離相等……… 5分

⑴當P在y軸上時,易知R在x軸上,此時PR方程為

.                                                       ……… 6分

⑵當P在x軸上時,易知R在y軸上,此時PR方程為,

.                                                       ……… 7分

⑶當P不在坐標軸上時,設PQ斜率為k,、

P在橢圓上,.......①;R在橢圓上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再將①②帶入,得

綜上當時,有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 變化情況如下表:

x

 

 

b

                                                                                            ……… 2分

∵函數(shù)上的最大值為1,

,此時應有

                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切線方程為                                             ……… 8分

(Ⅲ)                                   ………10分

     

∴當時,函數(shù)的無極值點

時,函數(shù)有兩個極值點                 ………12分

 

 


同步練習冊答案