③ .使函數(shù)的圖象關(guān)于y軸對稱, 查看更多

 

題目列表(包括答案和解析)

已知命題:
①“偶函數(shù)的圖象關(guān)于y軸對稱”的逆命題;
②三個實(shí)數(shù)a,b,c成等比數(shù)列的充要條件是b2=ac;
③“?x∈R,x2-x+1>0”;
④存在不共線的向量
 a 
 , 
 b 
,使得
 a 
=k
 b 
   k∈R
成立.其中真命題是( 。
A、①②③B、①④C、②③D、①③

查看答案和解析>>

已知命題:
①“偶函數(shù)的圖象關(guān)于y軸對稱”的逆命題;
②三個實(shí)數(shù)a,b,c成等比數(shù)列的充要條件是b2=ac;
③“?x∈R,x2-x+1>0”;
④存在不共線的向量數(shù)學(xué)公式,使得數(shù)學(xué)公式成立.其中真命題是


  1. A.
    ①②③
  2. B.
    ①④
  3. C.
    ②③
  4. D.
    ①③

查看答案和解析>>

已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,且滿足f(x-2)=ax2-(a-3)x+(a-2).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)g(x)=f[f(x)],F(xiàn)(x)=pg(x)+f(x),問是否存在p(p<0)使F(x)在區(qū)間(-∞,-3]上是減函數(shù),且在區(qū)間(-3,0)內(nèi)是增函數(shù)?試證明你的結(jié)論.

查看答案和解析>>

已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,且滿足f(x-2)=ax2-(a-3)x+(a-2).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)g(x)=f[f(x)],F(xiàn)(x)=pg(x)+f(x),問是否存在p(p<0)使F(x)在區(qū)間(-∞,-3]上是減函數(shù),且在區(qū)間(-3,0)內(nèi)是增函數(shù)?試證明你的結(jié)論.

查看答案和解析>>

已知函數(shù)y=f(x)的圖象關(guān)于y軸對稱,且滿足f(x-2)=ax2-(a-3)x+(a-2).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)g(x)=f[f(x)],F(xiàn)(x)=pg(x)+f(x),問是否存在p(p<0)使F(x)在區(qū)間(-∞,-3]上是減函數(shù),且在區(qū)間(-3,0)內(nèi)是增函數(shù)?試證明你的結(jié)論.

查看答案和解析>>

一、選擇題:每小題5分,滿分60.

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空題:每小題5分,滿分20.

13.

14. 

15.

16.①③④

三、解答題

17.設(shè)兩個實(shí)數(shù)為a,b,,,建立平面直角坐標(biāo)系aOb, 則點(diǎn)在正方形OABC內(nèi)       ……… 2分

(Ⅰ) 記事件A“兩數(shù)之和小于1.2”,即,則滿足條件的點(diǎn)在多邊形OAEFC內(nèi)

所以                                    ……… 6分

(Ⅱ) 記事件B“兩數(shù)的平方和小于0.25”,則滿足條件的點(diǎn)在扇形內(nèi)

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范圍是         ………12分

19.(Ⅰ)連接,交,易知中點(diǎn),故在△中,為邊的中位線,故,平面,平面,所以∥平面            ……… 5分

(Ⅱ)在平面內(nèi)過點(diǎn),垂足為H,

∵平面⊥平面,且平面∩平面,

⊥平面,∴,                                 ……… 8分

又∵中點(diǎn),∴

⊥平面,∴,又∵,

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各項均為正數(shù)的等差數(shù)列,且公差

 ∴           ……… 3分

為常數(shù),∴是等差數(shù)列           ……… 5分

(Ⅱ)∵,∴

是公差為1的等差數(shù)列                                       ……… 7分

,∴       ……… 9分

當(dāng)時,                                   ………10分

當(dāng)時,

綜上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由橢圓的對稱性知:PRQS為菱形,原點(diǎn)O到各邊距離相等……… 5分

⑴當(dāng)P在y軸上時,易知R在x軸上,此時PR方程為,

.                                                       ……… 6分

⑵當(dāng)P在x軸上時,易知R在y軸上,此時PR方程為,

.                                                       ……… 7分

⑶當(dāng)P不在坐標(biāo)軸上時,設(shè)PQ斜率為k,、

P在橢圓上,.......①;R在橢圓上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再將①②帶入,得

綜上當(dāng)時,有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 變化情況如下表:

x

 

 

b

                                                                                            ……… 2分

∵函數(shù)上的最大值為1,

,此時應(yīng)有

,                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切線方程為                                             ……… 8分

(Ⅲ)                                   ………10分

設(shè)

     

∴當(dāng)時,函數(shù)的無極值點(diǎn)

當(dāng)時,函數(shù)有兩個極值點(diǎn)                 ………12分

 

 


同步練習(xí)冊答案