題目列表(包括答案和解析)
已知 求證:
【解析】本試題組要是利用均值不等式配湊法,來證明關于不等式的證明問題。也可以運用分析法得到。
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當時,取,有,故時不合題意.當時,令,即
令,得
①當時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當時,,對于,,故在上單調(diào)遞增.因此當取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得 ,
從而
所以有
綜上,,
已知橢圓(a>b>0),點在橢圓上。
(I)求橢圓的離心率。
(II)設A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點定位】本小題主要考查橢圓的標準方程和幾何性質、直線的方程、平面內(nèi)兩點間距離公式等基礎知識. 考查用代數(shù)方法研究圓錐曲線的性質,以及數(shù)形結合的數(shù)學思想方法.考查運算求解能力、綜合分析和解決問題的能力.
已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在,有?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.
【解析】第一問中,由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)中當時,則
即,其中是大于等于的整數(shù)
反之當時,其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)中設當為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,式不成立。由式得,整理
當時,符合題意。當,為奇數(shù)時,
結合二項式定理得到結論。
解(1)由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)當時,則即,其中是大于等于的整數(shù)反之當時,其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)設當為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,式不成立。由式得,整理
當時,符合題意。當,為奇數(shù)時,
由,得
當為奇數(shù)時,此時,一定有和使上式一定成立。當為奇數(shù)時,命題都成立
已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.
【解析】第一問當時,,則。
依題意得:,即 解得
第二問當時,,令得,結合導數(shù)和函數(shù)之間的關系得到單調(diào)性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當時,,令得
當變化時,的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,!在上的最大值為2.
②當時, .當時, ,最大值為0;
當時, 在上單調(diào)遞增。∴在最大值為。
綜上,當時,即時,在區(qū)間上的最大值為2;
當時,即時,在區(qū)間上的最大值為。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則代入(*)式得:
即,而此方程無解,因此。此時,
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com