解:(Ⅰ)令 令 ----4分 (Ⅱ)∵ ① ∴ ② 由(Ⅰ).知 ∴①+②.得 ------8分 (Ⅲ)∵ ∴ ------------12分 由條件.可知當(dāng)恒成立時(shí)即可滿足條件 設(shè) 當(dāng)k>0時(shí).又二次函數(shù)的性質(zhì)知不可能成立 當(dāng)k=0時(shí).f(n)=-n-2<0恒成立, 當(dāng)k<0時(shí).由于對(duì)稱軸直線 ∴f(n)在上為單調(diào)遞減函數(shù) ∴只要f(1)<0.即可滿足恒成立 ∴由.∴k<0 綜上知.k≤0.不等式恒成立------------14分 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)f(x)=x2-ax+a(a≠0),不等式f(x)≤0的解集有且只有一個(gè)元素,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=f(n).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,滿足ci•ci+1<0的正整數(shù)i的個(gè)數(shù)稱作數(shù)列{cn}的變號(hào)數(shù),令cn=1-
aan
(n∈N*)
,求數(shù)列{cn}的變號(hào)數(shù).

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則,

當(dāng)時(shí),;當(dāng)時(shí),

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則

,即上單調(diào)遞增,                          (7分)

,從而,故上單調(diào)遞增,       (7分)

          (8分)

(3)由(2)知,當(dāng)時(shí),恒成立,即,

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

,

                           

                                        (12分)

。

 

查看答案和解析>>

(08年宣武區(qū)質(zhì)量檢一文)(14分)

已知二次函數(shù)f(x)=同時(shí)滿足:①不等式f(x)0的解集有且只有一個(gè)元素②在定義域內(nèi)存在0,使得不等式成立。設(shè)數(shù)列{}的前n項(xiàng)和.

(1)       求函數(shù)f(x)的表達(dá)式;

(2)       求數(shù)列{}的通項(xiàng)公式;

設(shè)各項(xiàng)均不為零的數(shù)列{}中,所有滿足的整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{}的變號(hào)數(shù)。令(n為正整數(shù)),求數(shù)列{}的變號(hào)數(shù)。

 

查看答案和解析>>

研究問(wèn)題:“已知關(guān)于的不等式的解集為,解關(guān)于的不等式”,有如下解法:

解:由,令,則,

    所以不等式的解集為

    參考上述解法,已知關(guān)于的不等式的解集為,則

    關(guān)于的不等式的解集為     

 

查看答案和解析>>

研究問(wèn)題:“已知關(guān)于的不等式的解集為,解關(guān)于的不等式”,有如下解法:

解:由,令,則,

    所以不等式的解集為

    參考上述解法,已知關(guān)于的不等式的解集為,則

    關(guān)于的不等式的解集為  ___________________  

 

查看答案和解析>>


同步練習(xí)冊(cè)答案