解:(1) ∵雙曲線過點 ∴ ∵雙曲線過點 ∴ 由直線過點得,解得 ∴反比例函數關系式為,一次函數關系式為. (2)存在符合條件的點,.理由如下: ∵∽ ∴∴.如右圖,設直線與軸.軸分別相交于點.,過點作軸于點,連接.則, 故,再由得,從而,因此,點的坐標為. 查看更多

 

題目列表(包括答案和解析)

已知直線l:y=-x+m(m≠0)交x軸、y軸于A、B兩點,點C、M分別在線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M旋轉180°,得到△FEM,則點E在y軸上,點F在直線l上;取線段EO中點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:過點F的雙曲線為C1,過點M且以B為頂點的拋物線為C2,過點P以M為頂點的拋物線為C3
(1)如圖,當m=6時,①直接寫出點M、F的坐標,②求C1、C2的函數解析式;
(2)當m發(fā)生變化時,①在C1的每一支上,y隨x的增大如何變化請說精英家教網明理由.②若C2、C3中的y都隨著x的增大而減小,寫出x的取值范圍.

查看答案和解析>>

已知直線l:y=-x+m(m≠0)交x軸、y軸于A、B兩點,點C、M分別在線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M旋轉180°,得到△FEM,則點E在y軸上,點F在直線l上;取線段EO中點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:過點F的雙曲線為C1,過點M且以B為頂點的拋物線為C2,過點P以M為頂點的拋物線為C3
(1)如圖,當m=6時,①直接寫出點M、F的坐標,②求C1、C2的函數解析式;
(2)當m發(fā)生變化時,①在C1的每一支上,y隨x的增大如何變化請說明理由.②若C2、C3中的y都隨著x的增大而減小,寫出x的取值范圍.

查看答案和解析>>

已知直線l:y=-x+m(m≠0)交x軸、y軸于A、B兩點,點C、M分別在線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M 旋轉180°,得到△FEM,則點E在y軸上, 點F在直線l上;取線段EO中點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:過點F的雙曲線為C1,過點M且以B為頂點的拋物線為C2,過點P且以M 為頂點的拋物線為C3.
(1) 如圖,當m=6時,①直接寫出點M、F的坐標, ②求C1、C2的函數解析式;
(2)當m發(fā)生變化時, ①在C1的每一支上,y隨x的增大如何變化?請說明理由。
                                     ②若C2、C3中的y都隨著x的增大而減小,寫出x的取值范圍。

查看答案和解析>>

已知直線l:y=-x+m(m≠0)x軸、y軸于A、B兩點,點C、M分別在

線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M

旋轉180°,得到△FEM,則點E在y軸上, 點F在直線l上;取線段EO中

點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:

過點F的雙曲線為6ec8aac122bd4f6e,過點M且以B為頂點的拋物線為6ec8aac122bd4f6e,過點P且以M

為頂點的拋物線為6ec8aac122bd4f6e.(1) 如圖,當m=6時,①直接寫出點M、F的坐標,

②求6ec8aac122bd4f6e6ec8aac122bd4f6e的函數解析式;

(2)當m發(fā)生變化時, ①在6ec8aac122bd4f6e的每一支上,y隨x的增大如何變化?請說明理由。

                      ②若6ec8aac122bd4f6e、6ec8aac122bd4f6e中的y都隨著x的增大而減小,寫出x的取值范圍。

6ec8aac122bd4f6e
 


查看答案和解析>>

已知直線l:y=-x+m(m≠0x軸、y軸于A、B兩點,點C、M分別在

線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點M

旋轉180°,得到△FEM,則點E在y軸上, 點F在直線l上;取線段EO中

點N,將ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點.記:

過點F的雙曲線為,過點M且以B為頂點的拋物線為,過點P且以M

為頂點的拋物線為.(1) 如圖10,當m=6時,①直接寫出點M、F的坐標,

②求、的函數解析式;

(2)當m發(fā)生變化時, ①在的每一支上,y隨x的增大如何變化?請說明理由。

                      ②若、中的y都隨著x的增大而減小,寫出x的取值范圍。


查看答案和解析>>


同步練習冊答案