題目列表(包括答案和解析)
(本小題共13分)若有窮數列{an}滿足:(1)首項a1=1,末項am=k,(2)an+1= an+1或an+1=2an ,(n=1,2,…,m-1),則稱數列{an}為k的m階數列.
(Ⅰ)請寫出一個10的6階數列;
(Ⅱ)設數列{bn}是各項為自然數的遞增數列,若,且,求m的最小值.
(考生務必將答案答在答題卡上,在試卷上作答無效)
3x+a |
x+b |
|x-y| | ||
|
(本小題共13分)
已知集合對于,,定義A與B的差為
A與B之間的距離為
(Ⅰ)證明:,且;
(Ⅱ)證明:三個數中至少有一個是偶數
(Ⅲ) 設P,P中有m(m≥2)個元素,記P中所有兩元素間距離的平均值為(P).
證明:(P)≤.
(考生務必將答案答在答題卡上,在試卷上作答無效)
3x+a |
x+b |
|x-y| | ||
|
一、選擇題(每小題5分,共50分)
1.B 2.C 3.A 4.D 5.C 6.D 7.B 8.C 9.A 10.D
二、填空題(每小題4分,共24分)
11.180 12.60 13. 14.2 15.5 16.
三、解答題(本大題共6小題,共76分)
17.(本題12分)
解:(Ⅰ)
………………………………(2分)
…………(4分)
…………………………………(6分)
(Ⅱ)
. ……………(8分)
由已知條件
根據正弦定理,得 …………………(10分)
……………………(12分)
18.(本題12分)
解:(Ⅰ) ……………………(2分)
……………………(4分)
……………………(6分)
當時,有(人).
在的基礎上,有(人),
……………………(8分)
(Ⅱ) …………(10分)
…………………………………(12分)
19.(本題12分)
證明:(Ⅰ)在△中,
…………………………(2分)
平面. …………………………(4分)
平面
…………………………(6分)
(Ⅱ)連接交于M,則M為的中點 …………………………(8分)
連接DM,則∥, …………………………(10分)
平面,平面,
∥平面 …………………………(12分)
20.(本題12分)
解:(Ⅰ)由已知得,又,
即. …………………………(2分)
,公差.
由,得 …………………………(4分)
即.解得或(舍去).
. …………………………(6分)
(Ⅱ)由得
…………………………(8分)
…………………………(9分)
是等差數列.
則
………………………(11分)
……………………(12分)
21.(本題14分)
解:(Ⅰ)依題意得
. ………………………(2分)
把(1,3)代入.
解得.
橢圓的方程為. ………………………(4分)
(Ⅱ)由(Ⅰ)得,設,如圖所示
點在橢圓上,
. ①
點異于頂點、,
.
由、、三點共線,可得
從而 …………………………(7分)
② …………(8分)
將①式代入②式化簡得 …………(10分)
…………(12分)
于是為銳角,為鈍角. ……………(14分)
22.(本題14分)
解:(Ⅰ),
令,得或. ………………(2分)
當時,在上單調遞增;
當時,在上單調遞減,
而,
當時,的值域是. ……………(4分)(Ⅱ)設函數在上的值域是A,
若對任意.總存在1,使,
. ……………(6分)
.
①當時,,
函數在上單調遞減.
,
當時,不滿足; ……………………(8分)
②當時,,
令,得或(舍去 ………………(9分)
(i)時,的變化如下表:
0
2
-
0
+
0
.
,解得. …………………(11分)
(ii)當時,
函數在上單調遞減.
,當時,不滿足. …………………(13分)
綜上可知,實數的取值范圍是. ……………………(14分)
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com