(1)∵.∴由②式得從而時. 查看更多

 

題目列表(包括答案和解析)

在數(shù)列中,,當(dāng)時, 

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設(shè),求數(shù)列的前項和.

【解析】本試題主要考查了數(shù)列的通項公式的求和 綜合運用。第一問中 ,利用,得到,故故為以1為首項,公差為2的等差數(shù)列. 從而     

第二問中,

,從而可得

為以1為首項,公差為2的等差數(shù)列.

從而      ……………………6分

(2)……………………9分

 

查看答案和解析>>

已知指數(shù)函數(shù),當(dāng)時,有,解關(guān)于x的不等式

【解析】本試題主要考查了指數(shù)函數(shù),對數(shù)函數(shù)性質(zhì)的運用。首先利用指數(shù)函數(shù),當(dāng)時,有,,得到,從而

等價于,聯(lián)立不等式組可以解得

解:∵ 時,有, ∴ 

于是由,得,

解得, ∴ 不等式的解集為。

 

查看答案和解析>>

任意正整數(shù)n都可以表示為的形式,其中a=1,當(dāng)1≤i≤k時,a1=0或ai=1.現(xiàn)將等于0的af的總個數(shù)記為f(n)(例如:l=l×2,4=l×22+0×21十0×2,從而f(1)=0,f(4)=2.由此可以計算求得=   

查看答案和解析>>

任意正整數(shù)n都可以表示為數(shù)學(xué)公式的形式,其中a0=1,當(dāng)1≤i≤k時,a1=0或ai=1.現(xiàn)將等于0的af的總個數(shù)記為f(n)(例如:l=l×20,4=l×22+0×21十0×20,從而f(1)=0,f(4)=2.由此可以計算求得數(shù)學(xué)公式=________.

查看答案和解析>>

設(shè)點是拋物線的焦點,是拋物線上的個不同的點().
(1) 當(dāng)時,試寫出拋物線上的三個定點、、的坐標(biāo),從而使得

(2)當(dāng)時,若,
求證:
(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

查看答案和解析>>


同步練習(xí)冊答案