①存在直線(xiàn).使得,②存在平面.使 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,已知圓x2+y2-12x+32=0的圓心為Q,過(guò)點(diǎn)P(0,2)且斜率為k的直線(xiàn)與圓Q相交于不同的兩點(diǎn)A,B.
(Ⅰ)求k的取值范圍;
(Ⅱ)是否存在常數(shù)k,使得向量
OA
+
OB
PQ
共線(xiàn)?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M (1,-3)、N(5,1),若點(diǎn)C滿(mǎn)足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線(xiàn):y2=4x交于A、B兩點(diǎn).
(1)求證:
OA
OB

(2)在x軸上是否存在一點(diǎn)P (m,0),使得過(guò)點(diǎn)P任作拋物線(xiàn)的一條弦,并以該弦為直徑的圓都過(guò)原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱(chēng),P是動(dòng)點(diǎn),且直線(xiàn)AP與BP的斜率之積等于-
13

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)直線(xiàn)AP和BP分別與直線(xiàn)x=3交于點(diǎn)M,N,問(wèn):是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,經(jīng)過(guò)點(diǎn)(0,
2
)
且斜率為k的直線(xiàn)l與橢圓
x2
2
+y2=1
有兩個(gè)不同的交點(diǎn)P和Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量
OP
+
OQ
AB
共線(xiàn)?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+y2=4和圓C2:(x-4)2+(y-4)2=4.
(1)若直線(xiàn)l過(guò)點(diǎn)A(4,-1),且被圓C1截得的弦長(zhǎng)為2
3
,求直線(xiàn)l的方程;
(2)是否存在一個(gè)定點(diǎn)P,使過(guò)P點(diǎn)有無(wú)數(shù)條直線(xiàn)l與圓C1和圓C2都相交,且l被兩圓截得的弦長(zhǎng)相等,若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、ADBAB  CDCBC

二、11  9   12     13  384    14     15     

三、解答題

16.解:(I)

       又,∴,   ……5分

     (II)

   

17.解:(Ⅰ) 拋擲一次出現(xiàn)的點(diǎn)數(shù)共有6×6 = 36種不同結(jié)果,其中“點(diǎn)數(shù)之和為7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6個(gè)結(jié)果,

∴拋擲一次出現(xiàn)的點(diǎn)數(shù)之和為7的概率為 ………………………… 2分

ξ可取1 , 2 , 3 , 4

P (ξ=1) =,P (ξ=2) =,P (ξ= 3) =

P (ξ= 4) =

∴ξ的概率分布列為

ξ

1

2

3

4

P

<li id="iab1e"><abbr id="iab1e"><meter id="iab1e"></meter></abbr></li>
  • …… 6分

    Eξ= 1×+ 2×+ 3×+ 4×=  …………………………… 8分

    (Ⅱ) 不限制兩人拋擲的次數(shù),甲獲勝的概率為:

     P =+ ()2×+ ()4×+ … = .      ………… 12分

     

    18.解:解:(1)它是有一條側(cè)棱垂直于底面的四棱錐      … 3分

    (注:評(píng)分注意實(shí)線(xiàn)、虛線(xiàn);垂直關(guān)系;長(zhǎng)度比例等)

    (2)由(1)得,6ec8aac122bd4f6e,6ec8aac122bd4f6e,得6ec8aac122bd4f6e

    6ec8aac122bd4f6e6ec8aac122bd4f6e,而6ec8aac122bd4f6e,6ec8aac122bd4f6e

    6ec8aac122bd4f6e…………6分

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e………8分

    又在6ec8aac122bd4f6e中,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

    ∴二面角6ec8aac122bd4f6e的平面角為6ec8aac122bd4f6e… ………8分

    (3)解略。 

    19.(I)證明:   ∵  ∴   ∵,

    是首項(xiàng)為2,公差為1的等差數(shù)列.       …………3分

    (II)解:=,     …6分

      =.   …7分

    (III)證明: ,

    .       …… 9分

        .…………12分

    20.解(Ⅰ)∵6ec8aac122bd4f6e過(guò)(0,0)    則6ec8aac122bd4f6e

    ∴∠OCA=90°,  即6ec8aac122bd4f6e  又∵6ec8aac122bd4f6e

    將C點(diǎn)坐標(biāo)代入得  6ec8aac122bd4f6e   解得  c2=8,b2=4

    ∴橢圓m:6ec8aac122bd4f6e  …………5分

    (Ⅱ)由條件D(0,-2)  ∵M(jìn)(0,t)

    1°當(dāng)k=0時(shí),顯然-2<t<2  …………6分

    2°當(dāng)k≠0時(shí),設(shè)6ec8aac122bd4f6e

    6ec8aac122bd4f6e   消y得  6ec8aac122bd4f6e  

    由△>0  可得  6ec8aac122bd4f6e   ①

    設(shè)6ec8aac122bd4f6e

    6ec8aac122bd4f6e     6ec8aac122bd4f6e   

    6ec8aac122bd4f6e           …………10分

    6ec8aac122bd4f6e 

    6ec8aac122bd4f6e   ②

    ∴t>1  將①代入②得   1<t<4

    ∴t的范圍是(1,4)。綜上t∈(-2,4)  ………………13分

     

    21.解: (1) 依題知,得:的方程為,

     即直線(xiàn)的方程是 ………………… 6分

    (2)  證明:由(1)得

    ①由于  ,所以

    ,所以

    ②因?yàn)? ,

    ,所以,即。

    ,所以

    故當(dāng)時(shí),有………………… 14分

     


    同步練習(xí)冊(cè)答案
    <tt id="iab1e"></tt>