(Ⅰ)求橢圓的方程, 查看更多

 

題目列表(包括答案和解析)





(1)求橢圓的方程;
(2)設直線l與橢圓交于A,B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值

查看答案和解析>>


(I)求橢圓的方程;
(II)求直線軸上截距的取值范圍;
(III)求面積的最大值

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>








(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:當時,;
(Ⅲ)當兩點在上運動,且 =6時, 求直線MN的方程

查看答案和解析>>

一、ADBAB  CDCBC

二、11  9   12     13  384    14     15     

三、解答題

16.解:(I)

       又,∴   ……5分

     (II)

   

17.解:(Ⅰ) 拋擲一次出現(xiàn)的點數(shù)共有6×6 = 36種不同結果,其中“點數(shù)之和為7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6個結果,

∴拋擲一次出現(xiàn)的點數(shù)之和為7的概率為 ………………………… 2分

ξ可取1 , 2 , 3 , 4

P (ξ=1) =,P (ξ=2) =,P (ξ= 3) =

P (ξ= 4) =

∴ξ的概率分布列為

ξ

1

2

3

4

P

    <track id="vhcvq"><tfoot id="vhcvq"><track id="vhcvq"></track></tfoot></track>
      <span id="vhcvq"><dfn id="vhcvq"><td id="vhcvq"></td></dfn></span>

      …… 6分

      Eξ= 1×+ 2×+ 3×+ 4×=  …………………………… 8分

      (Ⅱ) 不限制兩人拋擲的次數(shù),甲獲勝的概率為:

       P =+ ()2×+ ()4×+ … = .      ………… 12分

       

      18.解:解:(1)它是有一條側棱垂直于底面的四棱錐      … 3分

      (注:評分注意實線、虛線;垂直關系;長度比例等)

      (2)由(1)得,6ec8aac122bd4f6e,6ec8aac122bd4f6e,得6ec8aac122bd4f6e

      6ec8aac122bd4f6e6ec8aac122bd4f6e,而6ec8aac122bd4f6e,6ec8aac122bd4f6e

      6ec8aac122bd4f6e…………6分

      6ec8aac122bd4f6e

      6ec8aac122bd4f6e………8分

      又在6ec8aac122bd4f6e中,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

      ∴二面角6ec8aac122bd4f6e的平面角為6ec8aac122bd4f6e… ………8分

      (3)解略。 

      19.(I)證明:   ∵  ∴   ∵,

      是首項為2,公差為1的等差數(shù)列.       …………3分

      (II)解:=,     …6分

        =.   …7分

      (III)證明: ,

      .       …… 9分

          .…………12分

      20.解(Ⅰ)∵6ec8aac122bd4f6e過(0,0)    則6ec8aac122bd4f6e

      ∴∠OCA=90°,  即6ec8aac122bd4f6e  又∵6ec8aac122bd4f6e

      將C點坐標代入得  6ec8aac122bd4f6e   解得  c2=8,b2=4

      ∴橢圓m:6ec8aac122bd4f6e  …………5分

      (Ⅱ)由條件D(0,-2)  ∵M(0,t)

      1°當k=0時,顯然-2<t<2  …………6分

      2°當k≠0時,設6ec8aac122bd4f6e

      6ec8aac122bd4f6e   消y得  6ec8aac122bd4f6e  

      由△>0  可得  6ec8aac122bd4f6e   ①

      6ec8aac122bd4f6e

      6ec8aac122bd4f6e     6ec8aac122bd4f6e   

      6ec8aac122bd4f6e           …………10分

      6ec8aac122bd4f6e 

      6ec8aac122bd4f6e   ②

      ∴t>1  將①代入②得   1<t<4

      ∴t的范圍是(1,4)。綜上t∈(-2,4)  ………………13分

       

      21.解: (1) 依題知,得:,的方程為

       即直線的方程是 ………………… 6分

      (2)  證明:由(1)得

      ①由于  ,所以

      ,所以

      ②因為  ,

      ,所以,即

      ,所以

      故當時,有………………… 14分

       


      同步練習冊答案