在直二面角α―l―β中.直線aα,直線bβ,a.b與l斜交.則A.a不和b垂直.但可能a∥b B.a可能和b垂直.也可能a∥bC.a不和b垂直.a也不和b平行 D.a不和b平行.但可能a⊥b 查看更多

 

題目列表(包括答案和解析)

在直二面角α-l-β中,直線aα,直線bβ,a、b與l斜交,則(    )

A.a不和b垂直,但可能a∥b

B.a可能和b垂直,也可能a∥b

C.a不和b垂直,a也不和b平行

D.a不和b平行,但可能a⊥b

查看答案和解析>>

在直二面角α-l-β中,直線aα,直線bβ,a,b與l斜交,則(    )

A.a(chǎn)不能和b垂直,a也不能和b平行       B.a(chǎn)可能和b垂直,也可能a∥b

C.a不能和b垂直,但可能a∥b               D.a(chǎn)不能和b平行,但可能a⊥b

查看答案和解析>>

在銳二面角α-l-β中,直線a*平面α,直線b*平面β,且a、b都與l斜交,則

A.a可能與b垂直,也可能與b平行

B.a可能與b垂直,但不可能與b平行

C.a不可能與b垂直,也不可能與b平行

D.a不可能與b垂直,但可能與b平行

查看答案和解析>>

在銳二面角α-l-β中,直線a?平面α,直線b?平面β,且a,b都與l斜交,則( )
A.a(chǎn)可能與b垂直,也可能與b平行
B.a(chǎn)可能與b垂直,但不可能與b平行
C.a(chǎn)不可能與b垂直,也不可能與b平行
D.a(chǎn)不可能與b垂直,但可能與b平

查看答案和解析>>

在銳二面角α-l-β中,直線a?平面α,直線b?平面β,且a,b都與l斜交,則( )
A.a(chǎn)可能與b垂直,也可能與b平行
B.a(chǎn)可能與b垂直,但不可能與b平行
C.a(chǎn)不可能與b垂直,也不可能與b平行
D.a(chǎn)不可能與b垂直,但可能與b平

查看答案和解析>>

難點磁場

1.(1)證明:∵A1C1=B1C1,D1A1B1的中點,∴C1D1A1B1D1,

又∵平面A1ABB1⊥平面A1B1C1,∴C1D1⊥平面A1B1BA,

AB16ec8aac122bd4f6e平面A1ABB1,∴AB1C1D1.

(2)證明:連結(jié)D1D,∵DAB中點,∴DD16ec8aac122bd4f6eCC1,∴C1D1CD,由(1)得CDAB1,又∵C1D1⊥平面A1ABB1,C1BAB1,由三垂線定理得BD1AB1,

又∵A1DD1B,∴AB1A1DCDA1D=D,∴AB1⊥平面A1CD.

(3)解:由(2)AB1⊥平面A1CDO,連結(jié)CO1得∠ACO為直線AC與平面A1CD所成的角,∵AB1=3,AC=A1C1=2,∴AO=1,∴sinOCA=6ec8aac122bd4f6e,

∴∠OCA=6ec8aac122bd4f6e.

殲滅難點訓(xùn)練

一、1.解析:如圖,設(shè)A1C1B1D1=O1,∵B1D1A1O1,B1D1AA1,∴B1D1⊥平面AA1O1,故平面AA1O1AB1D1,交線為AO1,在面AA1O1內(nèi)過A1A1HAO1H,則易知A1H長即是點A1到平面AB1D1的距離,在Rt△A1O1A中,A1O1=6ec8aac122bd4f6e,AO1=36ec8aac122bd4f6e,由A1O1?A1A=h?AO1,可得A1H=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

答案:C?

2.解析:如圖,在l上任取一點P,過P分別在αβ內(nèi)作a′∥a,b′∥b,在a′上任取一點A,過AACl,垂足為C,則ACβ,過CCBb′交b′于B,連AB,由三垂線定理知ABb′,

6ec8aac122bd4f6e

∴△APB為直角三角形,故∠APB為銳角.

答案:C

二、3.解析:①是假命題,直線X、Y、Z位于正方體的三條共點棱時為反例,②③是真命題,④是假命題,平面XYZ位于正方體的三個共點側(cè)面時為反例.

答案:②③

4.④

三、5.證明:(1)∵PA⊥底面ABCD,∴ADPD在平面ABCD內(nèi)的射影,

CD6ec8aac122bd4f6e平面ABCDCDAD,∴CDPD.

(2)取CD中點G,連EG、FG,

EF分別是AB、PC的中點,∴EGAD,FGPD

∴平面EFG∥平面PAD,故EF∥平面PAD

(3)解:當(dāng)平面PCD與平面ABCD成45°角時,直線EF⊥面PCD

證明:GCD中點,則EGCD,由(1)知FGCD,故∠EGF為平面PCD與平面ABCD所成二面角的平面角.即∠EGF=45°,從而得∠ADP=45°,AD=AP

由Rt△PAE≌Rt△CBE,得PE=CE

FPC的中點,∴EFPC,由CDEG,CDFG,得CD⊥平面EFG,CDEFEFCD,故EF⊥平面PCD.

6.(1)證明:

6ec8aac122bd4f6e

同理EFFG,∴EFGH是平行四邊形

ABCD是正三棱錐,∴A在底面上的射影O是△BCD的中心,

DOBC,∴ADBC

HGEH,四邊形EFGH是矩形.

(2)作CPADP點,連結(jié)BP,∵ADBC,∴AD⊥面BCP

HGAD,∴HG⊥面BCPHG6ec8aac122bd4f6eEFGH.面BCP⊥面EFGH,

在Rt△APC中,∠CAP=30°,AC=a,∴AP=6ec8aac122bd4f6ea.

7.(1)證明:連結(jié)EM、MF,∵M、E分別是正三棱柱的棱ABAB1的中點,

BB1ME,又BB16ec8aac122bd4f6e平面EFM,∴BB1∥平面EFM.

(2)證明:取BC的中點N,連結(jié)AN由正三棱柱得:ANBC,

BFFC=1∶3,∴FBN的中點,故MFAN

MFBC,而BCBB1,BB1ME.

MEBC,由于MFME=M,∴BC⊥平面EFM,

EF?平面EFM,∴BCEF.

(3)解:取B1C1的中點O,連結(jié)A1O知,A1O⊥面BCC1B1,由點OB1D的垂線OQ,垂足為Q,連結(jié)A1Q,由三垂線定理,A1QB1D,故∠A1QD為二面角A1B1DC的平面角,易得∠A1QO=arctan6ec8aac122bd4f6e.

8.(1)證明:連結(jié)A1C1AC,ACBD交于點O,連結(jié)C1O

∵四邊形ABCD是菱形,∴ACBD,BC=CD

又∵∠BCC1=∠DCC1C1C是公共邊,∴△C1BC≌△C1DC,∴C1B=C1D

DO=OB,∴C1OBD,但ACBD,ACC1O=O

BD⊥平面AC1,又C1C6ec8aac122bd4f6e平面AC1,∴C1CBD.

 (2)解:由(1)知ACBD,C1OBD,∴∠C1OC是二面角αBDβ的平面角.

在△C1BC中,BC=2,C1C=6ec8aac122bd4f6e,∠BCC1=60°,∴C1B2=22+(6ec8aac122bd4f6e)2-2×2×6ec8aac122bd4f6e×cos60°=6ec8aac122bd4f6e.

∵∠OCB=30°,∴OB=6ec8aac122bd4f6e,BC=1,C1O=6ec8aac122bd4f6e,即C1O=C1C.

C1HOC,垂足為H,則HOC中點且OH=6ec8aac122bd4f6e,∴cosC1OC=6ec8aac122bd4f6e

(3)解:由(1)知BD⊥平面AC1,∵A1O6ec8aac122bd4f6e平面AC1,∴BDA1C,當(dāng)6ec8aac122bd4f6e=1時,平行六面體的六個面是全等的菱形,同理可證BC1A1C,又∵BDBC1=B,∴A1C⊥平面C1BD.


同步練習(xí)冊答案