(3)平行于軸的直線與拋物線的交點 同(2)一樣可能有0個交點.1個交點.2個交點.當(dāng)有2個交點時.兩交點的縱坐標(biāo)相等.設(shè)縱坐 查看更多

 

題目列表(包括答案和解析)

已知拋物線y=ax2+bx+6與x軸交于A、B兩點(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,且OB=
1
2
OC,tan∠ACO=
1
6
,頂點為D.
(1)求點A的坐標(biāo).
(2)求直線CD與x軸的交點E的坐標(biāo).
(3)在此拋物線上是否存在一點F,使得以點A、C、E、F為頂點的四邊形是平行四邊形?若存在,請求出點F的坐標(biāo);若不存在,請說明理由.
(4)若點M(2,y)是此拋物線上一點,點N是直線AM上方的拋物線上一動點,當(dāng)點N運動到什么位置時,四邊形ABMN的面積S最大?請求出此時S的最大值和點N的坐標(biāo).
(5)點P為此拋物線對稱軸上一動點,若以點P為圓心的圓與(4)中的直線AM及x軸同時相切,則此時點P的坐標(biāo)為
(1,
5
-1)或(1,-
5
-1)
(1,
5
-1)或(1,-
5
-1)

查看答案和解析>>

已知拋物線數(shù)學(xué)公式與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸交于點C,且x1,x2是方程x2-2x-3=0的兩個根(x1<x2).
(1)求拋物線的解析式;
(2)過點A作AD∥CB交拋物線于點D,求四邊形ACBD的面積;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作平行于x軸的直線l交BC于點Q,那么在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

已知拋物線y=ax2+bx+6與x軸交于A、B兩點(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,且OB=數(shù)學(xué)公式OC,tan∠ACO=數(shù)學(xué)公式,頂點為D.
(1)求點A的坐標(biāo).
(2)求直線CD與x軸的交點E的坐標(biāo).
(3)在此拋物線上是否存在一點F,使得以點A、C、E、F為頂點的四邊形是平行四邊形?若存在,請求出點F的坐標(biāo);若不存在,請說明理由.
(4)若點M(2,y)是此拋物線上一點,點N是直線AM上方的拋物線上一動點,當(dāng)點N運動到什么位置時,四邊形ABMN的面積S最大?請求出此時S的最大值和點N的坐標(biāo).
(5)點P為此拋物線對稱軸上一動點,若以點P為圓心的圓與(4)中的直線AM及x軸同時相切,則此時點P的坐標(biāo)為______.

查看答案和解析>>

已知拋物線y=。
(1)試說明:無論m為何實數(shù),該拋物線與x軸總有兩個不同的交點;
(2)如圖,當(dāng)該拋物線的對稱軸為直線x=3時,拋物線的頂點為點C,直線y=x-1與拋物線交于A、B兩點,并與它的對稱軸交于點D;
①拋物線上是否存在一點P使得四邊形ACPD是正方形?若存在,求出點P的坐標(biāo);若不存在,說明理由;
②平移直線CD,交直線AB于點M,交拋物線于點N,通過怎樣的平移能使得C、D、M、N為頂點的四邊形是平行四邊形。

查看答案和解析>>

已知拋物線

(1)試說明:無論m為何實數(shù),該拋物線與x軸總有兩個不同的交點;

(2)如圖,當(dāng)該拋物線的對稱軸為直線x=3時,拋物線的頂點為點C,直線y=x-1與拋物線交于A、B兩點,并與它的對稱軸交于點D.

①拋物線上是否存在一點P使得四邊形ACPD是正方形?若存在,求出點P的坐標(biāo);若不存在,說明理由;

②平移直線CD,交直線AB于點M,交拋物線于點N,通過怎樣的平移能使得CDM、N為頂點的四邊形是平行四邊形.

查看答案和解析>>


同步練習(xí)冊答案