題目列表(包括答案和解析)
(1)(6分)甲乙兩個同學共同做“驗證牛頓第二定律”的實驗,裝置如圖所示。
①兩位同學用砝碼盤(連同砝碼)的重力作為小車受到的合力,需要平衡桌面的摩擦力對小車運動的影響,將長木板的一端適當墊高,在不掛砝碼盤的情況下,輕推小車,能使小車做_______________運動。另外,還應滿足砝碼盤(連同砝碼)的質量m 小車的質量M。(填“遠小于”、“遠大于”或“近似等于”)接下來,甲同學在保持小車質量不變的條件下,研究加速度與合力的關系;乙同學在保持合力不變的條件下,研究小車的加速度與質量的關系。
②甲同學通過對小車所牽引紙帶的測量,就能得出小車的加速度a。圖2是某次實驗所打出的一條紙帶,在紙帶上標出了5個計數(shù)點,在相鄰的兩個計數(shù)點之間還有4個點未標出,圖中數(shù)據(jù)的單位是cm。
實驗中使用的電源是頻率f=50Hz的交變電流。根據(jù)以上數(shù)據(jù),可以算出小車的加速度a= m/s2。(結果保留三位有效數(shù)字)
(2)(12分)小明利用實驗室提供的器材測量某種電阻絲材料的電阻率,所用電阻絲的電阻約為20Ω。他首先把電阻絲拉直后將其兩端固定在刻度尺兩端的接線柱a和b上,在電阻絲上夾上一個與接線柱c相連的小金屬夾,沿電阻絲移動金屬夾,可改變其與電阻絲接觸點P的位置,從而改變接入電路中電阻絲的長度。可供選擇的器材還有:
電池組E(電動勢為3.0V,內阻約1Ω);
電流表A1(量程0~100mA,內阻約5W);
電流表A2(量程0~0.6A,內阻約0.2Ω);
電阻箱R(0~999.9W);
開關、導線若干。
小明的實驗操作步驟如下:
A.用螺旋測微器在電阻絲上三個不同的位置分別測量電阻絲的直徑d; |
B.根據(jù)所提供的實驗器材,設計并連接好如圖甲所示的實驗電路; |
C.調節(jié)電阻箱使其接入電路中的電阻值較大,閉合開關; |
D.將金屬夾夾在電阻絲上某位置,調整電阻箱接入電路中的電阻值,使電流表滿偏,記錄電阻箱的電阻值R和接入電路的電阻絲長度L; |
(1)(6分)甲乙兩個同學共同做“驗證牛頓第二定律”的實驗,裝置如圖所示。
①兩位同學用砝碼盤(連同砝碼)的重力作為小車受到的合力,需要平衡桌面的摩擦力對小車運動的影響,將長木板的一端適當墊高,在不掛砝碼盤的情況下,輕推小車,能使小車做_______________運動。另外,還應滿足砝碼盤(連同砝碼)的質量m 小車的質量M。(填“遠小于”、“遠大于”或“近似等于”)接下來,甲同學在保持小車質量不變的條件下,研究加速度與合力的關系;乙同學在保持合力不變的條件下,研究小車的加速度與質量的關系。
②甲同學通過對小車所牽引紙帶的測量,就能得出小車的加速度a。圖2是某次實驗所打出的一條紙帶,在紙帶上標出了5個計數(shù)點,在相鄰的兩個計數(shù)點之間還有4個點未標出,圖中數(shù)據(jù)的單位是cm。
實驗中使用的電源是頻率f=50Hz的交變電流。根據(jù)以上數(shù)據(jù),可以算出小車的加速度a= m/s2。(結果保留三位有效數(shù)字)
(2)(12分)小明利用實驗室提供的器材測量某種電阻絲材料的電阻率,所用電阻絲的電阻約為20Ω。他首先把電阻絲拉直后將其兩端固定在刻度尺兩端的接線柱a和b上,在電阻絲上夾上一個與接線柱c相連的小金屬夾,沿電阻絲移動金屬夾,可改變其與電阻絲接觸點P的位置,從而改變接入電路中電阻絲的長度?晒┻x擇的器材還有:
電池組E(電動勢為3.0V,內阻約1Ω);
電流表A1(量程0~100mA,內阻約5W);
電流表A2(量程0~0.6A,內阻約0.2Ω);
電阻箱R(0~999.9W);
開關、導線若干。
小明的實驗操作步驟如下:
A.用螺旋測微器在電阻絲上三個不同的位置分別測量電阻絲的直徑d;
B.根據(jù)所提供的實驗器材,設計并連接好如圖甲所示的實驗電路;
C.調節(jié)電阻箱使其接入電路中的電阻值較大,閉合開關;
D.將金屬夾夾在電阻絲上某位置,調整電阻箱接入電路中的電阻值,使電流表滿偏,記錄電阻箱的電阻值R和接入電路的電阻絲長度L;
E.改變金屬夾與電阻絲接觸點的位置,調整電阻箱接入電路中的阻值,使電流表再次滿偏。重復多次,記錄每一次電阻箱的電阻值R和接入電路的電阻絲長度L。
F.斷開開關。
①小明某次用螺旋測微器測量電阻絲直徑時其示數(shù)如圖乙所示,則這次測量中該電阻絲直徑的測量值d=____________ mm;
②實驗中電流表應選擇_____________(選填“A1”或“A2”);
③小明用記錄的多組電阻箱的電阻值R和對應的接入電路中電阻絲長度L的數(shù)據(jù),繪出了如圖丙所示的R-L關系圖線,圖線在R軸的截距為R0,在L軸的截距為L0,再結合測出的電阻絲直徑d,可求出這種電阻絲材料的電阻率r=____________(用給定的物理量符號和已知常數(shù)表示)。
④若在本實驗中的操作、讀數(shù)及計算均正確無誤,那么由于電流表內阻的存在,對電阻率的測量結果是否會產生影響?若有影響,請說明測量結果將偏大還是偏小。(不要求分析的過程,只回答出分析結果即可)
答: 。
A.用螺旋測微器在電阻絲上三個不同的位置分別測量電阻絲的直徑d; |
B.根據(jù)所提供的實驗器材,設計并連接好如圖甲所示的實驗電路; |
C.調節(jié)電阻箱使其接入電路中的電阻值較大,閉合開關; |
D.將金屬夾夾在電阻絲上某位置,調整電阻箱接入電路中的電阻值,使電流表滿偏,記錄電阻箱的電阻值R和接入電路的電阻絲長度L; |
第一部分 力&物體的平衡
第一講 力的處理
一、矢量的運算
1、加法
表達: + = 。
名詞:為“和矢量”。
法則:平行四邊形法則。如圖1所示。
和矢量大。篶 = ,其中α為和的夾角。
和矢量方向:在、之間,和夾角β= arcsin
2、減法
表達: = - 。
名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。
法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。
差矢量大。篴 = ,其中θ為和的夾角。
差矢量的方向可以用正弦定理求得。
一條直線上的矢量運算是平行四邊形和三角形法則的特例。
例題:已知質點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內和在T內的平均加速度大小。
解說:如圖3所示,A到B點對應T的過程,A到C點對應T的過程。這三點的速度矢量分別設為、和。
根據(jù)加速度的定義 = 得:= ,=
由于有兩處涉及矢量減法,設兩個差矢量 = - ,= - ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。
本題只關心各矢量的大小,顯然:
= = = ,且: = = , = 2=
所以:= = = ,= = = 。
(學生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?
答:否;不是。
3、乘法
矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質的不同。
⑴ 叉乘
表達:× =
名詞:稱“矢量的叉積”,它是一個新的矢量。
叉積的大。篶 = absinα,其中α為和的夾角。意義:的大小對應由和作成的平行四邊形的面積。
叉積的方向:垂直和確定的平面,并由右手螺旋定則確定方向,如圖4所示。
顯然,×≠×,但有:×= -×
⑵ 點乘
表達:· = c
名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。
點積的大。篶 = abcosα,其中α為和的夾角。
二、共點力的合成
1、平行四邊形法則與矢量表達式
2、一般平行四邊形的合力與分力的求法
余弦定理(或分割成RtΔ)解合力的大小
正弦定理解方向
三、力的分解
1、按效果分解
2、按需要——正交分解
第二講 物體的平衡
一、共點力平衡
1、特征:質心無加速度。
2、條件:Σ = 0 ,或 = 0 , = 0
例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。
解說:直接用三力共點的知識解題,幾何關系比較簡單。
答案:距棒的左端L/4處。
(學生活動)思考:放在斜面上的均質長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?
解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。
答:不會。
二、轉動平衡
1、特征:物體無轉動加速度。
2、條件:Σ= 0 ,或ΣM+ =ΣM-
如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。
3、非共點力的合成
大小和方向:遵從一條直線矢量合成法則。
作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。
第三講 習題課
1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉動的夾板(β不定),夾板和斜面夾著一個質量為m的光滑均質球體,試求:β取何值時,夾板對球的彈力最小。
解說:法一,平行四邊形動態(tài)處理。
對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構成一個三角形,如圖8的左圖和中圖所示。
由于G的大小和方向均不變,而N1的方向不可變,當β增大導致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。
顯然,隨著β增大,N1單調減小,而N2的大小先減小后增大,當N2垂直N1時,N2取極小值,且N2min = Gsinα。
法二,函數(shù)法。
看圖8的中間圖,對這個三角形用正弦定理,有:
= ,即:N2 = ,β在0到180°之間取值,N2的極值討論是很容易的。
答案:當β= 90°時,甲板的彈力最小。
2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?
解說:靜力學旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。
靜力學的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。
水平方向合力為零,得:支持力N持續(xù)增大。
物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關系。
對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。
答案:B 。
3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。
解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。
分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。
(學生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)
容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:
⑴
由胡克定律:F = k(- R) ⑵
幾何關系:= 2Rcosθ ⑶
解以上三式即可。
答案:arccos 。
(學生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?
答:變;不變。
(學生活動)反饋練習:光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?
解:和上題完全相同。
答:T變小,N不變。
4、如圖14所示,一個半徑為R的非均質圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。
解說:練習三力共點的應用。
根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。
答案:R 。
(學生活動)反饋練習:靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?
解:三力共點知識應用。
答: 。
4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?
解說:本題考查正弦定理、或力矩平衡解靜力學問題。
對兩球進行受力分析,并進行矢量平移,如圖16所示。
首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設為α。
而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設為F 。
對左邊的矢量三角形用正弦定理,有:
= ①
同理,對右邊的矢量三角形,有: = ②
解①②兩式即可。
答案:1 : 。
(學生活動)思考:解本題是否還有其它的方法?
答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。
應用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?
解:此時用共點力平衡更加復雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。
答:2 :3 。
5、如圖17所示,一個半徑為R的均質金屬球上固定著一根長為L的輕質細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?
解說:這是一個典型的力矩平衡的例題。
以球和桿為對象,研究其對轉軸O的轉動平衡,設木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:
f R + N(R + L)= G(R + L) ①
球和板已相對滑動,故:f = μN ②
解①②可得:f =
再看木板的平衡,F(xiàn) = f 。
同理,木板插進去時,球體和木板之間的摩擦f′= = F′。
答案: 。
第四講 摩擦角及其它
一、摩擦角
1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。
2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。
此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。
3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。
二、隔離法與整體法
1、隔離法:當物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。
在處理各隔離方程之間的聯(lián)系時,應注意相互作用力的大小和方向關系。
2、整體法:當各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。
應用整體法時應注意“系統(tǒng)”、“內力”和“外力”的涵義。
三、應用
1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。
解說:這是一個能顯示摩擦角解題優(yōu)越性的題目。可以通過不同解法的比較讓學生留下深刻印象。
法一,正交分解。(學生分析受力→列方程→得結果。)
法二,用摩擦角解題。
引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。
再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。
最后,μ= tgφm 。
答案:0.268 。
(學生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?
解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。
答:Gsin15°(其中G為物體的重量)。
2、如圖19所示,質量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。
解說:
本題旨在顯示整體法的解題的優(yōu)越性。
法一,隔離法。簡要介紹……
法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。
做整體的受力分析時,內力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。
答案:26.0N 。
(學生活動)地面給斜面體的支持力是多少?
解:略。
答:135N 。
應用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。
解說:這是一道難度較大的靜力學題,可以動用一切可能的工具解題。
法一:隔離法。
由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ
對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。
對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——
Fx = f + mgsinθ
Fy + mgcosθ= N
且 f = μN = Ntgθ
綜合以上三式得到:
Fx = Fytgθ+ 2mgsinθ ①
對斜面體,只看水平方向平衡就行了——
P = fcosθ+ Nsinθ
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化簡得:Fy = mgcosθ ②
②代入①可得:Fx = 3mgsinθ
最后由F =解F的大小,由tgα= 解F的方向(設α為F和斜面的夾角)。
答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內部。
法二:引入摩擦角和整體法觀念。
仍然沿用“法一”中關于F的方向設置(見圖21中的α角)。
先看整體的水平方向平衡,有:Fcos(θ- α) = P ⑴
再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構成一個三角形,如圖22所示。
在圖22右邊的矢量三角形中,有: = = ⑵
注意:φ= arctgμ= arctg(tgθ) = θ ⑶
解⑴⑵⑶式可得F和α的值。
一、選擇題(本題共10小題,每題4分,共40分)
1.解析:當θ較小時物塊與木板間的摩擦力為靜摩擦力,摩擦力大小與物塊重力沿板方向的分力大小相等,其大小為:,按正弦規(guī)律變化;當θ較大時物塊與木板間的摩擦力為滑動摩擦力,摩擦力大小為:,按余弦規(guī)律變化,故選B.答案:B
2.解析:物體緩慢下降過程中,細繩與豎直方向的夾角θ不斷減小,可把這種狀態(tài)推到無限小,即細繩與豎直方向的夾角為零;由平衡條件可知時,,,所以物體緩慢下降過程中,F(xiàn)逐漸減小,F(xiàn)f逐漸減小。故選D。
3. 解析: 由于二者間的電場力是作用力與反用力,若以
B為研究對象,絕緣手柄對B球的作用力未知,陷入困境,
因此以A為研究對象。設A帶電量為q,B帶電量為Q,
AB間距離為a,OB間距離為h ,由庫侖定律得
,由三角形OAB得,以B球為研究對象,
受力如圖3所示,由平衡條件得,由以上三式
得,
所以,故正確選項為D。
4.解析:設兩三角形滑塊的質量均為m,對整體有:
滑塊B受力如圖所示,則對B有:,
可解得:
5.解析:在增加重力時,不知哪根繩子先斷.故我們選擇O點為研究對象,先假設OA不會被拉斷,OB繩上的拉力先達最大值,則:,由拉密定理得:
解得:,OA將被拉斷.前面假設不成立.
再假設OA繩子拉力先達最大值,,此時,由拉密定理得:
解得:,故OB將不會斷.
此時,,故懸掛重物的重力最多只能為,所以C正確,答案C。
6.解析:物體受力平衡時,無論如何建立直角坐標系,兩個方向上的合力均為零。若以OA和垂直于OA方向建立坐標系,可以看出該力沿F1方向,A物體不能平衡;以水平和豎直方向建立坐標系,F4不能平衡。因此選BC,答案:BC
7.解析:由平衡知識可得,繩中拉力FT的大小不變,總等于物A的重力;假設汽車在滑輪的正下方,則繩中拉力FT的水平分量為零,此時汽車對地面的壓力FN最小,汽車受到的水平向右的的摩擦力Ff為零;當汽車距滑輪下方為無窮遠處時,繩中拉力FT的豎直分量為零,汽車對地面的壓力FN最大,汽車受到的水平向右的的摩擦力Ff最大,故選B.答案:B
8.解析:本題“濾速器”即速度選擇器,工作條件是電場力與洛侖茲力平衡,即qvB=qE,所以v=E/B。顯然“濾速器”只濾“速”,與粒子電性無關,故可假設粒子電性為正,若a板電勢較高,則電場力方向指向b板,洛侖茲力應指向a板方可滿足條件,由左手定則可得選項A是正確的;若a板電勢較低,同理可得選項D是正確的。答案:AD。
9.解析:若AB逆時針旋轉,則A對皮帶的靜摩擦力向左、B對皮帶的靜摩擦力向右才能將上方皮帶拉緊,因此皮帶相對A輪有向右運動趨勢,A為從動輪,B正確;同理,D項正確。答案:BD。
10.D解析:對物體受力分析,作出力的矢量三角形,就可解答。
二、填空和實驗題
11.Mg 將第2、3塊磚看成一個整體。由于對稱性,第1、4塊磚對2、3整體的摩擦力必定相同,且二者之和等于2、3整體的重力。所以第2與第1塊磚的摩擦力大小為mg。
12.微粒在重力、電場力和洛侖茲力作用下處于平衡狀態(tài),受力分析如圖,可知,
得電場強度,磁感應強度
13.探究一個規(guī)律不應該只用特殊的來代替一般。所以本實驗中兩個分力的大小應不相等,所以橡皮條也就不在兩繩夾角的平分線上,而兩繩的長度可以不等。所以A、B不對。實驗要求作用的效果要相同,因此O點的位置不能變動。因此D不對。實驗中合力的大小應是量出來而不是算出來的,所以F不對。答案:C。
14.(1)因紙質量較小,兩者間摩擦力也小,不易測量。紙貼在木板上,可增大正壓力,從而增大滑動摩擦力,便于測量。
(2)①參考方案:只要將測力計的一端與木塊A相連接,測力計的另一端與墻壁或豎直擋板之類的固定物相連.用手通過輕繩拉動木板B,讀出并記下測力計的讀數(shù)F,測出木塊A的質量m.
②
③彈簧測力計
三、計算題
15.解:當水平拉力F=0時,輕繩處于豎直位置時,繩子張力最小T1=G
當水平拉力F=
因此輕繩的張力范圍是G≤≤
。2)設在某位置球處于平衡位置由平衡條件得
所以即 ,得圖象如圖所示。
16.解析:(1)當S接1時,棒剛好靜止,則MN所受的安培力方向豎直向上,由左手定則可知,磁場的方向垂直紙面向里。
(2)設導軌的間距為L,MN棒的的質量為m。當S接1時,導體棒剛好靜止,則
mg=
設最終穩(wěn)定時MN的速率為v,則
BI’L=mg 而 解得:m2/s
17.解析: 因為環(huán)2的半徑為環(huán)3的2倍,環(huán)2的周長為環(huán)3的2倍,三環(huán)又是用同種金屬絲制成的,所以環(huán)2的質量為環(huán)3的2倍。設m為環(huán)3的質量,那么三根繩承擔的力為3mg,于是,環(huán)1與環(huán)3之間每根繩的張力FT1=mg。沒有摩擦,繩的重量不計,故每根繩子沿其整個長度上的張力是相同的(如圖所示)FT1= FT2=mg。
對環(huán)3,平衡時有:
由此
環(huán)2中心與環(huán)3中心之距離:,
即
18.解析:熱鋼板靠滾子的摩擦力進入滾子之間,根據(jù)摩擦力和壓力的關系,便可推知鋼板的厚度
以鋼板和滾子接觸的部分為研究對象,其受力情況如圖所示,鋼板能進入滾子之間,則在水平方向有: (式中),所以由兩式可得:μ≥tanθ
設滾子的半徑為R,再由圖中的幾何關系可得
,將此式代入得b≤(d+a)- 代入數(shù)據(jù)得b≤
即鋼板在滾子間勻速移動時,鋼板進入流子前厚度的最大值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com