題目列表(包括答案和解析)
如圖,直三棱柱中,,是棱的中點,
(1) 證明:
(2)求二面角的大小. (12分)
(本小題滿分12分)三棱錐被平行于底面的平面所截得的幾何體如圖所示,截面為,,平面,,,為中點.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的大小.
(本小題滿分12分)三棱錐被平行于底面的平面所截得的幾何體如圖所示,截面為,,平面,,,為中點.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的大。
(本小題滿分12分)
三棱錐被平行于底面的平面所截得的幾何體如圖所示,截面為,,平面,,,,,.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的大小.
(本小題滿分12分)三棱錐被平行于底面的平面所截得的幾何體如圖所示,截面為,,平面,,,為中點.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的大小.
一、選擇題:本大題共8個小題,每小題5分,共40分。
題號
1
2
3
4
5
6
7
8
答案
B
A
B
D
C
D
C
B
二、填空題:本大題共6個小題,每小題5分,共30分
9.60 10. 4 11. 12. 2 13.與 或 與 14. -2;1
三、解答題: 本大題共6個小題,共80分。
15. (本小題共13分)已知函數(shù)
(Ⅰ)求函數(shù)的定義域; (Ⅱ)求函數(shù)在區(qū)間上的最值。
解:(Ⅰ)由題意
所求定義域為 {} …………4分
(Ⅱ)
…………9分
由 知 ,
所以當時,取得最大值為; …………11分
當時,取得最小值為0 。 …………13分
16.(本小題共13分)已知數(shù)列中,,當時,函數(shù)取得極值。(Ⅰ)求數(shù)列的通項;(Ⅱ)在數(shù)列中,,,求的值
解:(Ⅰ) 由題意 得 , …………6分
又 所以 數(shù)列是公比為的等比數(shù)列 所以 …………8分
(Ⅱ) 因為 , …………10分
所以 ,,,……,
疊加得 把代入得 = …………13分
17. (本小題共14分)
如圖,在正三棱柱中,,是的中點,點在上,。
(Ⅰ)求所成角的正弦值;
(Ⅱ)證明;(Ⅲ) 求二面角的大小.
解:(Ⅰ)在正三棱柱中,
,又是正△ABC邊的中點,
,
∠為所成角
又 sin∠= …………5分
(Ⅱ)證明: 依題意得 ,,
因為 由(Ⅰ)知, 而,
所以 所以 …………9分
(Ⅲ) 過C作于,作于,連接
, …………11分
又 是所求二面角的平面角
,
二面角的大小為 …………14分
18. (本小題共13分)
某校高二年級開設(shè)《幾何證明選講》及《坐標系與參數(shù)方程》兩個模塊的選修科目。每名學(xué)生可以選擇參加一門選修,參加兩門選修或不參加選修。已知有60%的學(xué)生參加過《幾何證明選講》的選修,有75%的學(xué)生參加過《坐標系與參數(shù)方程》的選修,假設(shè)每個人對選修科目的選擇是相互獨立的,且各人的選擇相互之間沒有影響。
(Ⅰ)任選一名學(xué)生,求該生參加過模塊選修的概率;
(Ⅱ)任選3名學(xué)生,記為3人中參加過模塊選修的人數(shù),求的分布列和期望。
解:(Ⅰ)設(shè)該生參加過《幾何證明選講》的選修為事件A,
參加過《坐標系與參數(shù)方程》的選修為事件B, 該生參加過模塊選修的概率為P,
則
則 該生參加過模塊選修的概率為0.9 …………6分
(另:)
(Ⅱ) 可能取值0,1,2,3
=0.001,=0.027
=0.243, =0.729 …………10分
0
1
2
3
0.001
0.027
0.243
0.729
的分布列為
…………13分
19. (本小題共13分)
已知分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于直線,垂足為,線段的垂直平分線交于點M。(Ⅰ)求動點M的軌跡的方程;(Ⅱ)過點作直線交曲線于兩個不同的點P和Q,設(shè)=,若∈[2,3],求的取值范圍。
解:(Ⅰ)設(shè)M,則,由中垂線的性質(zhì)知
||= 化簡得的方程為 …………3分
(另:由知曲線是以x軸為對稱軸,以為焦點,以為準線的拋物線
所以 , 則動點M的軌跡的方程為)
(Ⅱ)設(shè),由= 知 ①
又由在曲線上知 ②
由 ① ② 解得 所以 有 …………8分
=== …………10分
設(shè) 有 在區(qū)間上是增函數(shù),
得,進而有 ,所以的取值范圍是 ……13分
20. (本小題共14分)
函 數(shù) 是 定 義 在R上 的 偶 函 數(shù),且時,
,記函數(shù)的圖像在處的切線為,。
(Ⅰ) 求在上的解析式;
(Ⅱ) 點列在上,
依次為x軸上的點,
如圖,當時,點構(gòu)成以為底邊
的等腰三角形。若,求數(shù)列的通項公式;
(Ⅲ)在 (Ⅱ)的條件下,是否存在實數(shù)a使得數(shù)列是等差數(shù)列?如果存在,寫出的一個值;如果不存在,請說明理由。
解:(Ⅰ) 函數(shù)是定義在R上的偶函數(shù),且
;是周期為2的函數(shù) …………1分
由 可知=-4 , …………4分
(Ⅱ) 函數(shù)的圖像在處的切線為,且,
切線過點且斜率為1,切線的方程為y=x+1 …………6分
在上,有 即
點構(gòu)成以為底邊的等腰三角形… ①
同理… ② 兩式相減 得
…………11分
(Ⅲ) 假設(shè)是等差數(shù)列 ,則 …………14分
故存在實數(shù)a使得數(shù)列是等差數(shù)列。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com