1. 第Ⅱ卷共6頁.用鋼筆或圓珠筆直接答在試題卷中. 查看更多

 

題目列表(包括答案和解析)

(14分)已知函數(shù)f(x)=在定義域內(nèi)為奇函數(shù),

且f(1)=2,f()=;

(1)確定函數(shù)的解析式;

(2)用定義證明f(x)在[1,+∞)上是增函數(shù);

第6頁(共6頁)

 
(3)解不等式f(t2+1)+f(-3+3t-2t2)<0.

查看答案和解析>>

   如圖,在底面為直角梯形的四棱錐,平面,,,

⑴求證:

⑵求直線與平面所成的角;

⑶設(shè)點(diǎn)在棱上,,

∥平面,求的值.

 

 

第4頁(共6頁)

 
 

 

查看答案和解析>>

 設(shè)函數(shù).

      (Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)是否存在實(shí)數(shù),使得關(guān)于的不等式的解集為?若存在,求的取值范圍;若不存在,試說明理由.

 

 

 

 

 

 

第5頁(共6頁)

 
 

 

查看答案和解析>>

 對(duì)于給定數(shù)列,如果存在實(shí)常數(shù),使得對(duì)于任意都成立,我們稱數(shù)列是 “類數(shù)列”.

(Ⅰ)已知數(shù)列是 “類數(shù)列”且,求它對(duì)應(yīng)的實(shí)常數(shù)的值;

(Ⅱ)若數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.并判斷是否為“類數(shù)列”,說明理由.

 

第3頁(共6頁)

 
 

 

查看答案和解析>>

 如圖,已知平面平面、是平面與平面

交線上的兩個(gè)定點(diǎn),,且,,

,,,在平面上有一個(gè)動(dòng)點(diǎn),

使得,則的面積的最大值是(    ) 

第2頁(共6頁)

 
 A      B      C       D  24

 

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有 一項(xiàng)是符合題目要求的。

1.B  2.D 3.B  4.C  5.C  6.B  7.A  8.B  9.A  10.D

 

二、填空題:本大題共5個(gè)小題,每小題5分,共25分,把答案填在題中的橫線上。

11.6  12.2   13.80  14.20  15. 0,

三、解答題:本大題共6小題,共75分。解答應(yīng)寫文字說明,證明過程或演算步驟。

16.解(1)證明:由

………………………………………………4分

(2)由正弦定理得     ∴……① …………6分

  又,=2,       ∴ …………② …………8分

解①②得 ,           …………………………………………10分

                          …………………12分

17.解:(1)由,即=0.……………2分

當(dāng)n>2時(shí)有

   ∴                        ……………………………6分

(2)由(1)知n>2時(shí),……………8分

=0,  =2也適合上式,

   ∴……………………10分

                  =1-<1……………………………………………12分

 

18.解:(1)分別取BE、AB的中點(diǎn)M、N,

連結(jié)PM、MC,PN、NC,則PM=1,MB=,BC=,

∴MC=,而PN=MB=,

NC=,∴PC=,…………………………4分

故所求PC與AB所成角的余弦值為………6分

(2)連結(jié)AP,∵二面角E-AB-C是直二面角,且AC⊥AB

∴∠BAP即為所求二面角的平面角,即∠BAP=300……8分

在RtΔBAF中,tan∠ABF=,∴∠ABF=600,

故BF⊥AP,    ………………………………………10分

又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC………12分

另解:分別以AB、AC、AF為x、y、z軸建立直角坐標(biāo)系,

  ∴

,  ∴

故異面直線PC與AB所成的角的余弦值為

(2)分別設(shè)平面ABC和平面PAC的法向量分別為,P點(diǎn)坐標(biāo)設(shè)為,則,則由

,

再由

,

,即

BF⊥AP,BF⊥AC∴BF⊥平面PAC

 

19.解:(1)當(dāng)0<x≤10時(shí),……2分

當(dāng)x >10時(shí),…………4分

…………………………………5分

(2)①當(dāng)0<x≤10時(shí),由

當(dāng)

∴當(dāng)x=9時(shí),W取最大值,且……9分

②當(dāng)x>10時(shí),W=98

當(dāng)且僅當(dāng)…………………………12分

綜合①、②知x=9時(shí),W取最大值.

所以當(dāng)年產(chǎn)量為9千件時(shí),該公司在這一品牌服裝生產(chǎn)中獲利最大.……13分

20. 解: (I) ,依題意有:,…………………2分

            即,

         ,由

          (也可寫成閉區(qū)間)……………4分

(2)   (1)

     函數(shù)的圖象與直線的交點(diǎn)的個(gè)數(shù)問題可轉(zhuǎn)化為方程(1)的解的個(gè)數(shù)問題.

       令

…………………………5分

6分

 

   ……………………9分

的極大值為

的圖象與軸只有一個(gè)交點(diǎn).…………………………………12分

綜上所述: ;

.……………13分

 

21.解:(1)B(0,-b)

,即D為線段FP的中點(diǎn).

……………………………2分

,即A、B、D共線.

而 

,得,

………………………………………5分

 

(2)∵=2,而,∴,故雙曲線的方程為………①

∴B、的坐標(biāo)為(0,-1)…………………………………………………………6分

假設(shè)存在定點(diǎn)C(0,)使為常數(shù).

設(shè)MN的方程為………………②

②代入①得………………………………………7分

由題意得:   得:……8分

設(shè)M、N的坐標(biāo)分別為(x1,y1) 、(x2,y2)

     …………………………………………………………9分

=

         =

==,…………………………10分

整理得:

對(duì)滿足恒成立.

解得

存在軸上的定點(diǎn)C(0,4),使為常數(shù)17.…………………………13分

 

 


同步練習(xí)冊(cè)答案