(Ⅲ)若函數(shù)在區(qū)間上的值域為.試求.應(yīng)滿足的條件. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).

(Ⅰ)若函數(shù)在區(qū)間上有最小值,求的值.

(Ⅱ)若同時滿足下列條件①函數(shù)在區(qū)間上單調(diào);②存在區(qū)間使得上的值域也為;則稱為區(qū)間上的閉函數(shù),試判斷函數(shù)是否為區(qū)間上的閉函數(shù)?若是求出實數(shù)的取值范圍,不是說明理由.

 

查看答案和解析>>

已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間上有最小值,求的值.
(Ⅱ)若同時滿足下列條件①函數(shù)在區(qū)間上單調(diào);②存在區(qū)間使得上的值域也為;則稱為區(qū)間上的閉函數(shù),試判斷函數(shù)是否為區(qū)間上的閉函數(shù)?若是求出實數(shù)的取值范圍,不是說明理由.

查看答案和解析>>

若函數(shù)f(x)為定義域D上單調(diào)函數(shù),且存在區(qū)間[a,b]⊆D(其中a<b),使得當(dāng)x∈[a,b]時,f(x)的取值范圍恰為[a,b],則稱函數(shù)f(x)是D上的正函數(shù),區(qū)間[a,b]叫做等域區(qū)間.
(1)已知f(x)=x
12
是[0,+∞)上的正函數(shù),求f(x)的等域區(qū)間;
(2)試探究是否存在實數(shù)m,使得函數(shù)g(x)=x2+m是(-∞,0)上的正函數(shù)?若存在,請求出實數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時,的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做等域區(qū)間.

(1)已知上的正函數(shù),求的等域區(qū)間;

(2)試探究是否存在實數(shù),使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.

 

查看答案和解析>>

若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時,的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做等域區(qū)間.

(1)已知上的正函數(shù),求的等域區(qū)間;

(2)試探究是否存在實數(shù),使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由

 

查看答案和解析>>

一.選擇題:DDCAB DDDAB

解析:1:,

而i,j為互相垂直的單位向量,故可得。故選

2:∵ ∴0<b<a<1. 由指數(shù)函數(shù)的單調(diào)性可知:,又∵ ∴選(D)

3:作y=與y=的圖象,從圖中可以看出:兩曲線有3個交點,即方程有3個實根.選(C)


4:由斜率去篩選,則可排除(C)、(D);再用點(-1,3)去篩選,代入(A)成立,

 ∴應(yīng)選(A).

 

5:取α= ±、±,代入求出sinα、tanα 、cotα 的值,易知α=-適合題設(shè)條件,∴應(yīng)選(B).


      M - i
              2 

6:由復(fù)數(shù)模的幾何意義,畫出右圖,可知當(dāng)圓上的點到M的距離最大時即為|z-i|最大。所以選D

 

7: ∵球的半徑R不小于△ABC的外接圓半徑r=, 則S=4πR2≥4πr2π>5π,故選(D).

8:當(dāng)θ0時,sin(sinθ)0,cosθ1,cos(cosθ)cos1,故排除A,B.

當(dāng)θ時,cos(sinθ)cos1,cosθ0,故排除C,因此選D.

9:由于的含義是于是若成立,則有成立;同理,若成立,則也成立,以上與指令“供選擇的答案中只有一個正確”相矛盾,故排除.再考慮,取代入得,顯然,排除.故選.

10:選項暗示我們,只要判斷出直線的條數(shù)就行,無須具體求出直線方程。以A(1,2)為圓心,1為半徑作圓A,以B(3,1)為圓心,2為半徑作圓B。由平面幾何知識易知,滿足題意的直線是兩圓的公切線,而兩圓的位置關(guān)系是相交,只有兩條公切線。故選B。

 

二.填空題:11、;12、; 13、;14、-1;15、4,;

解析:

11: ,顯然集合M中有90個元素,其真子集的個數(shù)是,應(yīng)填.

12:容易發(fā)現(xiàn),于是   原式=,應(yīng)填

13:記橢圓的二焦點為,有

則知

    顯然當(dāng),即點P位于橢圓的短軸的頂點處時,m取得最大值25.

    故應(yīng)填

14.(略)

15.(略)

三.解答題:

16.解:(1)由題設(shè),得

-----------------3分

因為垂直   即

. 又,故,∴的值為2.   ------------------6分

(2)當(dāng)垂直時,

 ------------------8分

,則------------------10分

  ------------------12分

17.解:(I)基本事件總數(shù)為,

若使方程有實根,則,即。------------------2分

當(dāng)時,;  當(dāng)時,; ------------------3分

 當(dāng)時,;   當(dāng)時,;  ------------------4分

 當(dāng)時,;     當(dāng)時,,      ------------------5分

目標(biāo)事件個數(shù)為

 因此方程 有實根的概率為------------------6分

(II)由題意知,,則 ,,

的分布列為

0

1

2

P

的數(shù)學(xué)期望    ------------------10分

(III)記“先后兩次出現(xiàn)的點數(shù)中有5”為事件M,“方程 有實根” 為事件N,則,   .------------------12分

18.解:(Ⅰ),                            

由題意得,的兩個根,

解得,.                      ------------------2分

再由可得

.  ------------------4分

(Ⅱ),

當(dāng)時,;當(dāng)時,;------------------5分
當(dāng)時,;當(dāng)時,;------------------6分
當(dāng)時,.∴函數(shù)在區(qū)間上是增函數(shù);------------------7分
在區(qū)間上是減函數(shù);在區(qū)間上是增函數(shù).
函數(shù)的極大值是,極小值是.         ------------------9分

(Ⅲ)函數(shù)的圖象是由的圖象向右平移個單位,向上平移4個單位得到,

所以,函數(shù)在區(qū)間上的值域為).-------------10分

,∴,即.                           

于是,函數(shù)在區(qū)間上的值域為.------------------12分

的單調(diào)性知,,即

綜上所述,、應(yīng)滿足的條件是:,且------------------14分

 

19.(Ⅰ)證明:連結(jié),連結(jié).

是正方形,∴ 的中點. ----------1分

的中點, ∴的中位線.  ∴.  ----------2分

 又∵平面平面, ----------3分

平面.------------------4分

(II)如圖,以A為坐標(biāo)原點,建立空間直角坐標(biāo)系

故設(shè),則

.  ----------6分

*底面,

是平面的法向量,.----------7分

設(shè)平面的法向量為,

,

 

  即 

 ∴     令,則.  ----------9分

,

∴二面角的余弦值為. ------------------10分

(III), ,

----------11分

   又.----------12分

.  又平面    ----------13分

 ∴平面⊥平面.     ------------------14分

 

20.解:(Ⅰ)易知,橢圓的半焦距為:,

 又拋物線的準(zhǔn)線為:.    ----------2分

設(shè)雙曲線M的方程為,依題意有

,又.

∴雙曲線M的方程為. ----------4分

(Ⅱ)設(shè)直線與雙曲線M的交點為、兩點

聯(lián)立方程組 消去y得  ,-------5分

、兩點的橫坐標(biāo)是上述方程的兩個不同實根, ∴

從而有,.   ----------7分

.

①     若,則有 ,即 .

∴當(dāng)時,使得.    ----------10分

② 若存在實數(shù),使A、B兩點關(guān)于直線對稱,則必有 ,

因此,當(dāng)m=0時,不存在滿足條件的k;

當(dāng)時,由

  

∵A、B中點在直線上,

,代入上式得

,又, ∴----------13分

代入并注意到,得 .

∴當(dāng)時,存在實數(shù),使A、B兩點關(guān)于直線對稱----------14分

 

21.解(I)三角形數(shù)表中前行共有個數(shù),

 第行最后一個數(shù)應(yīng)當(dāng)是所給奇數(shù)列中的第項。

  故第行最后一個數(shù)是        

  因此,使得的m是不等式的最小正整數(shù)解。----------4分

  由得

  ----------6分

于是,第45行第一個數(shù)是 

     ----------7分

(II),。 

故        ----------9分

 第n行最后一個數(shù)是,且有n個數(shù),若將看成第n行第一個數(shù),則第n行各數(shù)成公差為-2的等差數(shù)列,故。

  故

   ,

    兩式相減得:

                 

        ----------13分

         ----------14分


同步練習(xí)冊答案