設(shè)橢圓的方程:. ----1分 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),且離心率且過橢圓右焦點(diǎn)的直線與橢圓C交于兩點(diǎn).

(1)求橢圓C的方程;

(2)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.

(3)若AB是橢圓C經(jīng)過原點(diǎn)O的弦, MNAB,求證:為定值.

查看答案和解析>>

設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為,過點(diǎn)垂直的直線分別交橢圓和軸正半軸于,兩點(diǎn),且分向量所成的比為8∶5.

(1)求橢圓的離心率;

(2)若過三點(diǎn)的圓恰好與直線相切,求橢圓方程.

 

 

 

查看答案和解析>>

設(shè)橢圓數(shù)學(xué)公式的一個(gè)頂點(diǎn)為(0,數(shù)學(xué)公式),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),離心率e=數(shù)學(xué)公式,過橢圓右焦點(diǎn)F2的直線l與橢圓C交于M,N兩點(diǎn).
(1)求橢圓C的方程;
(2)若AB是橢圓C經(jīng)過原點(diǎn)O的弦,MN∥AB,求證:數(shù)學(xué)公式為定值.

查看答案和解析>>

設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1B2,且△AB1B2是面積為的直角三角形.過1作直線l交橢圓于P、Q兩點(diǎn).

(1) 求該橢圓的標(biāo)準(zhǔn)方程;

(2) 若,求直線l的方程;

(3) 設(shè)直線l與圓Ox2+y2=8相交于M、N兩點(diǎn),令|MN|的長度為t,若t,求△B2PQ的面積的取值范圍.

查看答案和解析>>

設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),且離心率且過橢圓右焦點(diǎn)F2的直線l與橢圓C交于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在直線l,使得.若存在,求出直線l的方程;若不存在,說明理由.
(3)若AB是橢圓C經(jīng)過原點(diǎn)O的弦,MN∥AB,求證:為定值.

查看答案和解析>>


同步練習(xí)冊答案