易得直線:.由.得M(.-),------ 12分 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

,,為常數(shù),離心率為的雙曲線上的動點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

第二問中,,,

故直線的方程為,即,

所以,同理可得:

借助于根與系數(shù)的關(guān)系得到即,是方程的兩個不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

(Ⅱ)設(shè),,

故直線的方程為,即

所以,同理可得:,

是方程的兩個不同的根,所以

由已知易得,即

 

查看答案和解析>>

關(guān)于平面向量的數(shù)量積運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類比,易得下列結(jié)論:
a
b
=
b
a
;②(
a
b
)•
c
=
a
•(
b
c
)
;③
a
•(
b
+
c
)=
a
b
+
a
c

|
a
b
|=|
a
|•|
b
|
;⑤由
a
b
=
a
c
(
a
0
)
,可得
b
=
c

以上通過類比得到的結(jié)論正確的有( 。
A、2個B、3個C、4個D、5個

查看答案和解析>>

將平面向量的數(shù)量積運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類比,易得下列結(jié)論:
(1)
a
b
=
b
a
;
(2)(
a
b
)•
c
=
a
 •(
b
c
)
;
(3)
a
•(
b
+
c
)=
a
b
+
a
• 
c

(4)由
a
b
=
a
c
(
a
0
)
可得
b
=
c

以上通過類比得到的結(jié)論正確的有( 。

查看答案和解析>>

關(guān)于平面向量的數(shù)量積運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類比,易得下列結(jié)論:①;②;③;

;⑤由可得

以上通過類比得到的結(jié)論正確的有(    )

A.2個           B.3個           C.4個           D.5個

 

查看答案和解析>>


同步練習(xí)冊答案