題目列表(包括答案和解析)
如圖,某小區(qū)準(zhǔn)備綠化一塊直徑為的半圓形空地,外的地方種草,的內(nèi)接正方形為一水池,其余地方種花.若 ,設(shè)的面積為,正方形的面積為,將比值稱為“規(guī)劃合理度”.
(1)試用,表示和.
(2)當(dāng)為定值,變化時(shí),求“規(guī)劃合理度”取得最小值時(shí)的角的大小.
【解析】第一問中利用在ABC中 ,
=設(shè)正方形的邊長為 則 然后解得
第二問中,利用 而=
借助于 為減函數(shù) 得到結(jié)論。
(1)、 如圖,在ABC中 ,
=
設(shè)正方形的邊長為 則
=
(2)、 而= ∵0 < < ,又0 <2 <,0<t£1 為減函數(shù)
當(dāng)時(shí) 取得最小值為此時(shí)
| ||
2 |
1 |
32 |
1 |
32 |
如圖甲,設(shè)正方形的邊長為,點(diǎn)分別在上,并且滿足
,如圖乙,將直角梯形沿折到的位置,使點(diǎn)在
平面上的射影恰好在上.
(1)證明:平面;
(2)求平面與平面所成二面角的余弦值.
如圖,正方形所在平面與圓所在的平面相交于,線段為圓的弦,垂直于圓所在的平面,垂足為圓上異于、的點(diǎn),設(shè)正方形的邊長為,且.
(1)求證:平面平面;
(2)若異面直線與所成的角為,與底面所成角為,二面角所成角為,求證
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com