例2.如取(x)=x 2 和 為非線性函數(shù). 查看更多

 

題目列表(包括答案和解析)

若0<a<2,0<b<2,0<c<2,證明:a(2-b)、b(2-c)、c(2-a)不可能都大于1.

查看答案和解析>>

已知函數(shù)f(x)的定義域為[-2,+∞),部分對應值如表格所示,f′(x)為f(x).的導函數(shù),函數(shù)y=f′(x)的圖象如右圖所示:
x -2 0 4
f(x) 1 -1 1
若兩正數(shù)a,b滿足f(a+2b)<1,則
b-4
a+4
的取值范圍是( 。

查看答案和解析>>

已知函數(shù)f(x)的定義域為[-1,5],部分對應值如下表,f(x)的導函數(shù)y=f′(x)的圖象如圖所示
x -1 0 2 4 5
y 1 2 0 2 1
若函數(shù)y=f(x)-a有4個零點,則a的取值范圍為
[1,2)
[1,2)

查看答案和解析>>

已知直線y=k(x-2)(k∈R)與雙曲線
x2
m
-
y2
8
=1
,某學生作了如下變形;由
y=k(x-2)
x2
m
-
y2
8
=1
消去y后得到形如關于x的方程ax2+bx+c=0.討論:當a=0時,該方程恒有一解;當a≠0時,b2>4ac恒成立,假設該學生的演算過程是正確的,則根據(jù)該學生的演算過程所提供的信息,求出實數(shù)m的取值范圍應為(  )

查看答案和解析>>

已知函數(shù)f(x)的定義域為[-2,+∞),部分對應值如下表.f′(x)為f(x)的導函數(shù),函數(shù)y=f′(x)的圖象如圖所示.若實數(shù)a滿足f(2a+1)<1,則a的取值范圍是( 。
x -2 0 4
f(x) 1 -1 1

查看答案和解析>>


同步練習冊答案