題目列表(包括答案和解析)
(本小題滿分12分)某玩具廠計劃每天生產(chǎn)A、B、C三種玩具共100個. 已知生產(chǎn)一個玩具A需5分鐘,生產(chǎn)一個玩具B需7分鐘,生產(chǎn)一個玩具C需4分鐘,而且總生產(chǎn)時間不超過10個小時. 若每生產(chǎn)一個玩具A、B、C可獲得的利潤分別為5元、6元、3元.(I)用每天生產(chǎn)的玩具A的個數(shù)與玩具B的個數(shù)表示每天的利潤元;
(II)請你為玩具廠制定合理的生產(chǎn)任務(wù)分配計劃,使每天的利潤最大,并求最大利潤.
(本小題滿分12分)某射擊運(yùn)動員在一次射擊中,命中10環(huán)、9環(huán)、8環(huán)、7環(huán)的概率分別為0.2、0.35、0.2、0.15。求此運(yùn)動員
(1)在一次射擊中,命中10環(huán)或9環(huán)的概率。
(2)在一次射擊中,命中環(huán)數(shù)小于8環(huán)的概率。
(3)在兩次射擊中,至少有一次擊中10環(huán)的概率。
(本小題滿分12分)某產(chǎn)品生產(chǎn)單位產(chǎn)品時的總成本函數(shù)為.每單位產(chǎn)品的價格是134元,求使利潤最大時的產(chǎn)量.
(本小題滿分12分)某炮兵陣地位于地面A處,兩觀察所分別位于地面點(diǎn)C和D處, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目標(biāo)出現(xiàn)于地面點(diǎn)B處時,測得∠BCD=30°,∠BDC=15°(如圖),求炮兵陣地到目標(biāo)的距離.
(本小題滿分12分)
某射手每次射擊擊中目標(biāo)的概率是,且各次射擊的結(jié)果互不影響。
(Ⅰ)假設(shè)這名射手射擊5次,求恰有2次擊中目標(biāo)的概率
(Ⅱ)假設(shè)這名射手射擊5次,求有3次連續(xù)擊中目標(biāo)。另外2次未擊中目標(biāo)的概率;
(Ⅲ)假設(shè)這名射手射擊3次,每次射擊,擊中目標(biāo)得1分,未擊中目標(biāo)得0分,在3次射擊中,若有2次連續(xù)擊中,而另外1次未擊中,則額外加1分;若3次全擊中,則額外加3分,記為射手射擊3次后的總的分?jǐn)?shù),求的分布列。
一、選擇題:本大題共12個小題,每小題5分,共60分。
1―5 BCBAB 6―10 DCCCD 11―12 DB
二、填空題:本大題共4個小題,每小題4分,共16分。
13. 14.1:2 15.①②⑤ 16.⑤
|