如圖.已知曲線:在點(diǎn)處的切線與軸交于點(diǎn).過點(diǎn)作軸的垂線交曲線于點(diǎn).曲線在點(diǎn)處的切線與軸交于點(diǎn).過點(diǎn)作軸的垂線交曲線于點(diǎn).--.依次得到一系列點(diǎn)..--..設(shè)點(diǎn)的坐標(biāo)為(). 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動直線l與C1相切,與C2相交于A,B兩點(diǎn),曲線C2在A,B處的切線相交于點(diǎn)M.
(1)當(dāng)MA⊥MB時(shí),求直線l的方程;
(2)試問在y軸上是否存在兩個(gè)定點(diǎn)T1,T2,當(dāng)直線MT1,MT2斜率存在時(shí),兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

如圖,已知曲線與拋物線c2:x2=2py(p>0)的交點(diǎn)分別為A、B,曲線c1和拋物線c2在點(diǎn)A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當(dāng)為定值時(shí),求證k1•k2為定值(與p無關(guān)),并求出這個(gè)定值;
(Ⅱ)若直線l2與y軸的交點(diǎn)為D(0,-2),當(dāng)a2+b2取得最小值9時(shí),求曲線c1和c2的方程.

查看答案和解析>>

如圖,已知曲線與拋物線c2:x2=2py(p>0)的交點(diǎn)分別為A、B,曲線c1和拋物線c2在點(diǎn)A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當(dāng)為定值時(shí),求證k1•k2為定值(與p無關(guān)),并求出這個(gè)定值;
(Ⅱ)若直線l2與y軸的交點(diǎn)為D(0,-2),當(dāng)a2+b2取得最小值9時(shí),求曲線c1和c2的方程.

查看答案和解析>>

精英家教網(wǎng)已知函數(shù)f(x)=x3+x2,數(shù)列|xn|(xn>0)的第一項(xiàng)xn=1,以后各項(xiàng)按如下方式取定:曲線x=f(x)在(xn+1,f(xn+1))處的切線與經(jīng)過(0,0)和(xn,f (xn))兩點(diǎn)的直線平行(如圖).
求證:當(dāng)n∈N*時(shí),
(Ⅰ)xn2+xn=3xn+12+2xn+1;
(Ⅱ)(
1
2
)n-1xn≤(
1
2
)n-2

查看答案和解析>>

已知函數(shù)f(x)=ex(x3-6x2+3x+a),
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)在(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)f(x)有三個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)定義:如果曲線C上存在不同點(diǎn)的兩點(diǎn)A(x1,y1 ),B(x2,y2 ),過AB的中點(diǎn)且垂直于x軸的直線交曲線C于點(diǎn)M,使得直線AB與曲線C在M處的切線平行,則稱曲線C有“平衡切線”.
試判斷函數(shù)G(x)=[f'(x)-f(x)]•e-x+ex的圖象是否有“平衡切線”,為什么?

查看答案和解析>>

 

一.選擇題   1-5   6-10   11-12     BCDCA  DADBC  AC

 

二.填空題   13.  ;   14. ;    15.

 16.

 

三、解答題

17.【解】(Ⅰ)由整理得,

,------2分

,      -------5分

,∴。                  -------7分

【解】(Ⅱ)∵,∴最長邊為,              --------8分

,∴,              --------10分

為最小邊,由余弦定理得,解得,

,即最小邊長為1                      --------12分

 

18.【解】(Ⅰ)∵,∴.---2分

,得,

,∴,即,∴,------4分

當(dāng)時(shí),,的單調(diào)遞增區(qū)間為;------5分

當(dāng)時(shí),.------6分

的單調(diào)遞減區(qū)間為.------7分

(Ⅱ)∵時(shí),;------8分

時(shí),時(shí),,------9分

處取得極大值-7.  ------10分

,解得.------12分                                

 

19.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號的紅鯽魚與中國金魚數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚與中國金魚的數(shù)目相同,設(shè)池塘中兩種魚的總數(shù)是,則有

,                                        ------------3分

即   ,

所以,可估計(jì)水庫中的紅鯽魚與中國金魚的數(shù)量均為25000.      ------------6分

(Ⅱ)從上述對總體的估計(jì)數(shù)據(jù)獲知,從池塘隨機(jī)捕出1只魚,它是中國金魚的概率為.隨機(jī)地從池塘逐只有放回地捕出5只魚,5只魚都是紅鯽魚的概率是,所以其中至少有一只中國金魚的概率.------12分

20.【解】在中,,,∴

,∴四邊形為正方形.

       ----6分

(Ⅱ)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面.         ------8分

證明如下:

    如圖,取的中點(diǎn),連、,

、、分別為、、的中點(diǎn),

平面,平面

平面.        ------10分

同理可證平面

,

∴平面平面

平面,∴平面.   ------12分

 

21.【解】(Ⅰ)法1:依題意顯然的斜率存在,可設(shè)直線的方程為,

整理得 . ①    ---------------------2分

    設(shè)是方程①的兩個(gè)不同的根,

    ∴,   ②                  ----------------4分

    且,由是線段的中點(diǎn),得

    ,∴

    解得,這個(gè)值滿足②式,

    于是,直線的方程為,即      --------------6分

    法2:設(shè),,則有

          --------2分

    依題意,,∴.            ---------------------4分

的中點(diǎn), ∴,從而

直線的方程為,即.    ----------------6分

(Ⅱ)∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③             ---------------8分

又設(shè),的中點(diǎn)為,則是方程③的兩根,

,.-----10分

到直線的距離,故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:.-----------12分

 

22.【解】(Ⅰ)由求導(dǎo)得,

∴曲線在點(diǎn)處的切線方程為,即

此切線與軸的交點(diǎn)的坐標(biāo)為,

∴點(diǎn)的坐標(biāo)為.即.                -------------------2分

∵點(diǎn)的坐標(biāo)為),在曲線上,所以,

∴曲線在點(diǎn)處的切線方程為---4分

,得點(diǎn)的橫坐標(biāo)為

∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列.

).     ------------------6分

(Ⅱ)∵,

.---------10分

(Ⅲ)因?yàn)?sub>,所以,

所以數(shù)列的前n項(xiàng)和的前n項(xiàng)和為①,

---------12分

 

②,

①―②得

,

所以          ---------14分

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案