(1)請(qǐng)你探索中線AD的取值范圍是多少(2)如圖梯形ABCD中.AD∥BC.M是AD的中點(diǎn).N是BC的中點(diǎn).如果AB=10.CD=6.則MN的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

9、如圖,已知:AD是△ABC的中線.
(1)畫出與△ADC關(guān)于點(diǎn)D成中心對(duì)稱的三角形;
(2)找出與AC相等的線段;
(3)探索:三角形中AB與AC的和與中線AD之間的關(guān)系,并說(shuō)明理由;
(4)若AB=5,AC=3,則線段AD的取值范圍是多少?

查看答案和解析>>

如圖,△ABC中,點(diǎn)D是BC中點(diǎn),連接AD并延長(zhǎng)到點(diǎn)E,連接BE.
(1)若要使△ACD≌△EBD,應(yīng)添上條件:
AC∥BE
AC∥BE
;
(2)證明上題;
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請(qǐng)看解題過(guò)程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,則AD<4.請(qǐng)參考上述解題方法,求AD>
1
1

查看答案和解析>>

如圖,△ABC中,點(diǎn)D是BC中點(diǎn),連接AD并延長(zhǎng)到點(diǎn)E,連接BE.
(1)若要使△ACD≌△EBD,應(yīng)添上條件:
AD=DE
AD=DE
;
(2)證明:
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請(qǐng)看解題過(guò)程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,則AD<4.請(qǐng)參考上述解題方法,求出AD>
1
1
.所以AD的取值范圍是
1<AD<4
1<AD<4

查看答案和解析>>

如圖,△ABC中,點(diǎn)D是BC中點(diǎn),連接AD并延長(zhǎng)到點(diǎn)E,連接BE.
(1)若要使△ACD≌△EBD,應(yīng)添上條件:______;
(2)證明上題;
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請(qǐng)看解題過(guò)程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而數(shù)學(xué)公式,則AD<4.請(qǐng)參考上述解題方法,求AD>______.

查看答案和解析>>

14、如圖,在△ABC中,AB=3,AC=5,則BC邊上的中線AD的取值范圍是(  )

查看答案和解析>>


同步練習(xí)冊(cè)答案