題目列表(包括答案和解析)
q3 |
3 |
市場情形 | 概率 | 價格p與產(chǎn)量q的函數(shù)關(guān)系式 |
好 | 0.4 | p=164-3q |
中 | 0.4 | p=101-3q |
差 | 0.2 | p=70-3q |
(1)求P(D);
(2)該射手一次射擊中,求擊中A區(qū)或B區(qū)的概率;
(3)該射手共射擊三次,求恰有兩次擊中A區(qū)的概率.
該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價格p與產(chǎn)量q的函數(shù)關(guān)系式如下表所示: | ||||||||||||
| ||||||||||||
(1)分別求利潤L1,L2,L3與產(chǎn)量q的函數(shù)關(guān)系式; (2)當產(chǎn)量q確定時,求期望Eξk; (3)試問產(chǎn)量q取何值時,Eξk取得最大值。 |
q3 |
3 |
市場情形 | 概率 | 價格p與產(chǎn)量q的函數(shù)關(guān)系式 |
好 | 0.4 | p=164-3q |
中 | 0.4 | p=101-3q |
差 | 0.2 | p=70-3q |
現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;
(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學(xué)期望.
【解析】依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為.
設(shè)“這4個人中恰有i人去參加甲游戲”為事件
則.
(1)這4個人中恰有2人去參加甲游戲的概率
(2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故
所以,這個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.
(3)的所有可能取值為0,2,4.由于互斥,互斥,故
所以的分布列是
0 |
2 |
4 |
|
P |
隨機變量的數(shù)學(xué)期望.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com