求△面積的最大值. 勒流中學2008-2009學年度第二學期期中考試 查看更多

 

題目列表(包括答案和解析)

已知問題:上海迪斯尼工程某 施工工地上有一堵墻,工程隊欲將長為4a(a>0)的建筑護欄(厚度不計)借助這堵墻圍成矩形的施工區(qū)域(如圖1),求所得區(qū)域的最大面積.解決這一問題的一種方法是:作出護欄關(guān)于墻面的軸對稱圖形(如圖2),則原問題轉(zhuǎn)化為“已知矩形周長為8a,求面積的最大值”從而輕松獲解.參考這種借助對稱圖形解決問題的方法,對于下列情形:已知兩堵墻互相垂直圍成“L”形,工程隊將長為4a(a>0)的建筑護欄借助墻角圍成四邊形的施工區(qū)域(如圖3),可求得所圍區(qū)域的最大面積為
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

(2011•東城區(qū)一模)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的離心率為
2
2
,且橢圓上的點到兩個焦點的距離和為2
2
.斜率為k(k≠0)的直線l過橢圓的上焦點且與橢圓相交于P,Q兩點,線段PQ的垂直平分線與y軸相交于點M(0,m).
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)試用m表示△MPQ的面積,并求面積的最大值.

查看答案和解析>>

在△中,角所對的邊分別為,

    I.試判斷△的形狀;

II.若△的周長為16,求面積的最大值.

查看答案和解析>>

已知橢圓方程為,斜率為的直線過橢圓的上焦點且與橢圓相交于,兩點,線段的垂直平分線與軸相交于點
(Ⅰ)求的取值范圍;
(Ⅱ)求△面積的最大值.

查看答案和解析>>

(本小題滿分13分)

已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且·="0," ||=||.(點C在x軸上方)

(I)求橢圓的方程;

(II)若平行于CO的直線和橢圓交于M,N兩個不同點,求面積的最大值,并求此時直線的方程.

 

查看答案和解析>>

一、選擇題:BDCCB   BADCA

二、填空題:    11.  2            12.     

13.       14.

三、解答題:

15、解:依題意得:(1)=0,解之得m=0或m=3

∴當m=0或m=3時,復(fù)數(shù)是實數(shù); ……………4分

(2)≠0,解之得m≠0且m≠3

∴當m≠0且m≠3時,復(fù)數(shù)是虛數(shù);……………8分

(3),解之得m=3

∴當m=3時,復(fù)數(shù)是純虛數(shù).      ……………12分

16、解:(1)∵      ∴  兩邊平方相加,

   即  .       ………………4分

∴曲線是長軸在x軸上且為10,短軸為8,中心在原點的橢圓.   ………6分

(2)∵∴由代入

                    ……………10分

∴它表示過(0,)和(1, 0)的一條直線.               …………12分

 

 

 

 

 

17、解:(Ⅰ),                                  ………1分

.                               ………2分

            ,.                            ………4分

        橢圓的方程為,                       ………5分

因為                               ………6分

所以離心率.                           ………8分

(Ⅱ)設(shè)的中點為,則點.           ………10分

又點K在橢圓上,則中點的軌跡方程為  ………14分

 

 

18、解:(1)列出2×2列聯(lián)表

 

 

說謊

不說謊

合計

女生

15

5

20

男生

10

20

30

合計

25

25

50

…………6分

(2)假設(shè)H0 "說謊與性別無關(guān)",則隨機變量K2的觀測值:

                  ……………10分

,而             ……………………12分

所以有99.5%的把握認為"說謊與性別有關(guān)".          ……………14分

 

 

 

 

 

 

 

 

 

 

 

 

19、解:(1)

………………4分

(2),0×5+1×7+2×8+3×11+4×19=132,

         …………8分

 

故Y關(guān)于x的線性回歸方程為 y=3.2x+3.6         ………10分

(3)x=5,y=196(萬)

據(jù)此估計2005年.該 城市人口總數(shù)196(萬)            ………14分

 

 

 

 

 

 

 

 

 

 

 

 

20、解:(1)設(shè)橢圓的半焦距為,依題意   ………2分

 

,∴  所求橢圓方程為.         ………4分

 

(2)設(shè),

軸時,.                                ………5分

軸不垂直時,設(shè)直線的方程為.        ………6分

由已知,得.                 ………7分

代入橢圓方程,整理得,………8分

.………10分

.     ………12分

當且僅當,即時等號成立.當時,

綜上所述.                                      ………13分

最大時,面積取最大值.………14分

 

 


同步練習冊答案