[試題分析]: 顯然展開式的各項(xiàng)系數(shù)之和就是二項(xiàng)式系數(shù)之和.也即n=5,將5拆分成“前3后2 恰好出現(xiàn)常數(shù)項(xiàng).C=10.[高考考點(diǎn)]: 二項(xiàng)式[易錯(cuò)提醒]: 課本中的典型題目.套用公式解題時(shí).易出現(xiàn)計(jì)算錯(cuò)誤[備考提示]: 二項(xiàng)式的考題難度相對(duì)較小.注意三基訓(xùn)練. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)其中a>0.

(I)求函數(shù)f(x)的單調(diào)區(qū)間;

(II)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;

(III)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值。

【考點(diǎn)定位】本小題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),函數(shù)的最值等基礎(chǔ)知識(shí).考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.

 

查看答案和解析>>

求數(shù)列的前項(xiàng)和.

【解題思路】根據(jù)通項(xiàng)公式,通過觀察、分析、研究,可以分解通項(xiàng)公式中的對(duì)應(yīng)項(xiàng),達(dá)到求和的目的.

查看答案和解析>>

已知橢圓(a>b>0),點(diǎn)在橢圓上。

(I)求橢圓的離心率。

(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識(shí). 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

(本小題滿分10分)

中,為邊上的一點(diǎn),,,,求

【命題意圖】本試題主要考查同角三角函數(shù)關(guān)系、兩角和差公式和正弦定理在解三角形中的應(yīng)用,考查考生對(duì)基礎(chǔ)知識(shí)、基本技能的掌握情況.

查看答案和解析>>

已知集合M={1,2,3,4},N={-2,2},下列結(jié)論成立的是

A.NM   B.M∪N=M   C.M∩N=N   D.M∩N={2}

【解析】顯然A,B,C錯(cuò),D正確;

 

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(Ⅰ)

因?yàn)楹瘮?shù)的最小正周期為,且,

所以,解得

(Ⅱ)由(Ⅰ)得

因?yàn)?sub>,

所以,

所以,

因此,即的取值范圍為

16.(共14分)

解法一:

(Ⅰ)取中點(diǎn),連結(jié)

,

,

平面

平面,

(Ⅱ),

,

,即,且,

平面

中點(diǎn).連結(jié)

,

在平面內(nèi)的射影,

是二面角的平面角.

中,,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面

平面平面

,垂足為

平面平面,

平面

的長即為點(diǎn)到平面的距離.

由(Ⅰ)知,又,且

平面

平面,

中,,

點(diǎn)到平面的距離為

解法二:

(Ⅰ),

,

,

平面

平面,

(Ⅱ)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系

設(shè)

,

,

中點(diǎn),連結(jié)

,

是二面角的平面角.

,,

二面角的大小為

(Ⅲ),

在平面內(nèi)的射影為正的中心,且的長為點(diǎn)到平面的距離.

如(Ⅱ)建立空間直角坐標(biāo)系

,

點(diǎn)的坐標(biāo)為

點(diǎn)到平面的距離為

17.(共13分)

解:(Ⅰ)記甲、乙兩人同時(shí)參加崗位服務(wù)為事件,那么

即甲、乙兩人同時(shí)參加崗位服務(wù)的概率是

(Ⅱ)記甲、乙兩人同時(shí)參加同一崗位服務(wù)為事件,那么

所以,甲、乙兩人不在同一崗位服務(wù)的概率是

(Ⅲ)隨機(jī)變量可能取的值為1,2.事件“”是指有兩人同時(shí)參加崗位服務(wù),

所以,的分布列是

1

3

 

18.(共13分)

解:

,得

當(dāng),即時(shí),的變化情況如下表:

0

當(dāng),即時(shí),的變化情況如下表:

0

所以,當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

上單調(diào)遞減.

當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

當(dāng),即時(shí),,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減.

19.(共14分)

解:(Ⅰ)由題意得直線的方程為

因?yàn)樗倪呅?sub>為菱形,所以

于是可設(shè)直線的方程為

因?yàn)?sub>在橢圓上,

所以,解得

設(shè)兩點(diǎn)坐標(biāo)分別為,

,,

所以

所以的中點(diǎn)坐標(biāo)為

由四邊形為菱形可知,點(diǎn)在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因?yàn)樗倪呅?sub>為菱形,且,

所以

所以菱形的面積

由(Ⅰ)可得,

所以

所以當(dāng)時(shí),菱形的面積取得最大值

20.(共13分)

(Ⅰ)解:,

,

;

,

(Ⅱ)證明:設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列,

,,,

從而

,

所以

同步練習(xí)冊(cè)答案