已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:
①f(5)=0;
②f(x)在[1.2]上是減函數(shù);
③f(x)的圖象關于直線x=1對稱;
④函數(shù)y=f(x)在x=0處取得最大值;
⑤函數(shù)y=f(x)沒有最小值(x∈R).
其中正確論斷的序號是( 。
A.①③④B.②④⑤C.①②④D.③④⑤
相關習題

科目:高中數(shù)學 來源: 題型:

35、已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號是
(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:
①f(5)=0;
②f(x)在[1.2]上是減函數(shù);
③f(x)的圖象關于直線x=1對稱;
④函數(shù)y=f(x)在x=0處取得最大值;
⑤函數(shù)y=f(x)沒有最小值(x∈R).
其中正確論斷的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號是 ______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:
①f(5)=0;
②f(x)在[1.2]上是減函數(shù);
③f(x)的圖象關于直線x=1對稱;
④函數(shù)y=f(x)在x=0處取得最大值;
⑤函數(shù)y=f(x)沒有最小值(x∈R).
其中正確論斷的序號是( 。
A.①③④B.②④⑤C.①②④D.③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶市楊家坪中學高三(上)11月月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:
①f(5)=0;
②f(x)在[1.2]上是減函數(shù);
③f(x)的圖象關于直線x=1對稱;
④函數(shù)y=f(x)在x=0處取得最大值;
⑤函數(shù)y=f(x)沒有最小值(x∈R).
其中正確論斷的序號是( )
A.①③④
B.②④⑤
C.①②④
D.③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省孝感高中高三(上)9月調(diào)考數(shù)學試卷(理科)(解析版) 題型:填空題

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號是    

查看答案和解析>>

科目:高中數(shù)學 來源:2011年陜西省西安市西工大附中高考數(shù)學六模試卷(解析版) 題型:填空題

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號是    

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年北京市高三(下)畢業(yè)班沖刺訓練數(shù)學試卷2(理科)(解析版) 題型:解答題

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號是    

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學單元檢測:函數(shù)(4)(解析版) 題型:解答題

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號是    

查看答案和解析>>

科目:高中數(shù)學 來源:2010年四川省成都市石室中學高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號是    

查看答案和解析>>


同步練習冊答案