在一個公比為2的等比數(shù)列中,已知a2?a5=32,則a4?a7=( 。
A.32B.64C.128D.512
D
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

3、在一個公比為2的等比數(shù)列中,已知a2•a5=32,則a4•a7=( 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在一個公比為2的等比數(shù)列中,已知a2•a5=32,則a4•a7=( 。
A.32B.64C.128D.512

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶第二外國語學校高三(下)3月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

在一個公比為2的等比數(shù)列中,已知a2•a5=32,則a4•a7=( )
A.32
B.64
C.128
D.512

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在一個公比為2的等比數(shù)列中,已知a2•a5=32,則a4•a7=


  1. A.
    32
  2. B.
    64
  3. C.
    128
  4. D.
    512

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的前n項和為Sn,已知an+1=2Sn+2(n∈N+)
(1)求數(shù)列{an}通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成一個公差為dn的等差數(shù)列.
(。┣笞C:
1
d1
+
1
d2
+
1
d3
+…+
1
dn
15
16
(n∈N+)

(ⅱ)在數(shù)列{dn}中是否存在三項dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等比數(shù)列{an}的前n項和為Sn,已知數(shù)學公式
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列(如:在a1與a2之間插入1個數(shù)構(gòu)成第一個等差數(shù)列,其公差為d1;在a2與a3之間插入2個數(shù)構(gòu)成第二個等差數(shù)列,其公差為d2,…以此類推),設第n個等差數(shù)列的和是An.是否存在一個關(guān)于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數(shù)列d1,d2,d3,…,dn,…,這個數(shù)列中是否存在不同的三項dm,dk,dp(其中正整數(shù)m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等比數(shù)列{an}的前n項和為Sn.已知an+1=2Sn+2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成一個公差為dn的等差數(shù)列.
①設Tn=數(shù)學公式4(n∈N*)5,求Tn;
②在數(shù)列{dn}中是否存在三項dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年廣東省汕尾市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

設等比數(shù)列{an}的前n項和為Sn,已知
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列(如:在a1與a2之間插入1個數(shù)構(gòu)成第一個等差數(shù)列,其公差為d1;在a2與a3之間插入2個數(shù)構(gòu)成第二個等差數(shù)列,其公差為d2,…以此類推),設第n個等差數(shù)列的和是An.是否存在一個關(guān)于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數(shù)列d1,d2,d3,…,dn,…,這個數(shù)列中是否存在不同的三項dm,dk,dp(其中正整數(shù)m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市十三校高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

設等比數(shù)列{an}的前n項和為Sn,已知
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列(如:在a1與a2之間插入1個數(shù)構(gòu)成第一個等差數(shù)列,其公差為d1;在a2與a3之間插入2個數(shù)構(gòu)成第二個等差數(shù)列,其公差為d2,…以此類推),設第n個等差數(shù)列的和是An.是否存在一個關(guān)于n的多項式g(n),使得An=g(n)dn對任意n∈N*恒成立?若存在,求出這個多項式;若不存在,請說明理由;
(3)對于(2)中的數(shù)列d1,d2,d3,…,dn,…,這個數(shù)列中是否存在不同的三項dm,dk,dp(其中正整數(shù)m,k,p成等差數(shù)列)成等比數(shù)列,若存在,求出這樣的三項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的首項為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項;數(shù)列{bn}滿足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
(3)當{bn}為等差數(shù)列時,對任意正整數(shù)k,在ak與ak+1之間插入2共bk個,得到一個新數(shù)列{cn}.設Tn是數(shù)列{cn}的前n項和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.

查看答案和解析>>


同步練習冊答案