若⊙O的直徑為10,圓心O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)為(4,3),則點(diǎn)P與⊙O的位置關(guān)系是( 。
A.點(diǎn)P在⊙O上B.點(diǎn)P在⊙O內(nèi)
C.點(diǎn)P在⊙O外D.以上都有可能
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年山東省煙臺(tái)市招遠(yuǎn)市九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

若⊙O的直徑為10,圓心O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)為(4,3),則點(diǎn)P與⊙O的位置關(guān)系是( )
A.點(diǎn)P在⊙O上
B.點(diǎn)P在⊙O內(nèi)
C.點(diǎn)P在⊙O外
D.以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

若⊙O的直徑為10,圓心O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)為(4,3),則點(diǎn)P與⊙O的位置關(guān)系是


  1. A.
    點(diǎn)P在⊙O上
  2. B.
    點(diǎn)P在⊙O內(nèi)
  3. C.
    點(diǎn)P在⊙O外
  4. D.
    以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州市惠城區(qū)十八校九年級(jí)4月模擬考試數(shù)學(xué)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形AOCB是梯形,ABOC,點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(10,0),OBOC.點(diǎn)PC點(diǎn)出發(fā),沿線段CO以5個(gè)單位/秒的速度向終點(diǎn)O勻速運(yùn)動(dòng),過點(diǎn)PPHOB,垂足為H.

      (1)求點(diǎn)B的坐標(biāo);

      (2)設(shè)△HBP的面積為SS≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求St之間的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),△HBP的面積最大,并求出最大面積;

(3)分別以PH為圓心,PCHB為半徑作⊙P和⊙H,當(dāng)兩圓外切時(shí),求此時(shí)t的值.

【解析】(1)根據(jù)已知得出OB=OC=10,BN=OA=8,即可得出B點(diǎn)的坐標(biāo);

(2)利用△BON∽△POH,得出對(duì)應(yīng)線段成比例,即可得出S與t之間的函數(shù)關(guān)系式;從而求出△HBP的最大面積;

(3)若⊙P和⊙H兩圓外切 ,則須HB+PC=HP,從而求解

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B'點(diǎn).求B'點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點(diǎn)G,若拋物線y=
16
x2+m過點(diǎn)G,求拋物線的精英家教網(wǎng)解析式,并判斷以原點(diǎn)O為圓心,OG為半徑的圓與拋物線除交點(diǎn)G外,是否還有交點(diǎn)?若有,請(qǐng)直接寫出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B'點(diǎn).求B'點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點(diǎn)G,若拋物線y=數(shù)學(xué)公式x2+m過點(diǎn)G,求拋物線的解析式,并判斷以原點(diǎn)O為圓心,OG為半徑的圓與拋物線除交點(diǎn)G外,是否還有交點(diǎn)?若有,請(qǐng)直接寫出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《第2章 二次函數(shù)》2010年市立一中水平檢測(cè)試卷(解析版) 題型:解答題

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B'點(diǎn).求B'點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點(diǎn)G,若拋物線y=x2+m過點(diǎn)G,求拋物線的解析式,并判斷以原點(diǎn)O為圓心,OG為半徑的圓與拋物線除交點(diǎn)G外,是否還有交點(diǎn)?若有,請(qǐng)直接寫出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(46):2.7 最大面積是多少(解析版) 題型:解答題

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B'點(diǎn).求B'點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點(diǎn)G,若拋物線y=x2+m過點(diǎn)G,求拋物線的解析式,并判斷以原點(diǎn)O為圓心,OG為半徑的圓與拋物線除交點(diǎn)G外,是否還有交點(diǎn)?若有,請(qǐng)直接寫出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第34章《二次函數(shù)》中考題集(50):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B'點(diǎn).求B'點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點(diǎn)G,若拋物線y=x2+m過點(diǎn)G,求拋物線的解析式,并判斷以原點(diǎn)O為圓心,OG為半徑的圓與拋物線除交點(diǎn)G外,是否還有交點(diǎn)?若有,請(qǐng)直接寫出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(49):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B'點(diǎn).求B'點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點(diǎn)G,若拋物線y=x2+m過點(diǎn)G,求拋物線的解析式,并判斷以原點(diǎn)O為圓心,OG為半徑的圓與拋物線除交點(diǎn)G外,是否還有交點(diǎn)?若有,請(qǐng)直接寫出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第27章《二次函數(shù)》中考題集(49):27.3 實(shí)踐與探索(解析版) 題型:解答題

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點(diǎn)M,使得△CBM沿CM翻折后,點(diǎn)B落在x軸上,記作B'點(diǎn).求B'點(diǎn)的坐標(biāo);
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點(diǎn)G,若拋物線y=x2+m過點(diǎn)G,求拋物線的解析式,并判斷以原點(diǎn)O為圓心,OG為半徑的圓與拋物線除交點(diǎn)G外,是否還有交點(diǎn)?若有,請(qǐng)直接寫出交點(diǎn)的坐標(biāo).

查看答案和解析>>


同步練習(xí)冊(cè)答案