函數(shù)f(x)=4x-1+22-x的最小值為( 。
A.3B.
5
4
C.2D.1
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=4x-1+22-x的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=4x-1+22-x的最小值為( 。
A.3B.
5
4
C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市西南大學(xué)附中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

函數(shù)f(x)=4x-1+22-x的最小值為( )
A.3
B.
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x2-4x+1(x∈R),若f(x1)=f(x2),且x1>x2,則
x
2
1
+
x
2
2
x1-x2
的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(0,2)
(0,2)
上遞減;并利用單調(diào)性定義證明.函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(2,+∞)
(2,+∞)
上遞增.當(dāng)x=
2
2
時,y最小=
4
4

(2)函數(shù)f(x)=x+
4
x
(x<0)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定相應(yīng)的x的值,列表如下:
x
1
4
1
2
1
3
2
2
8
3
4 8 16
 y 16.25 8.5 5
25
6
4
25
6
5 8.5 16.25
請觀察表中y值隨x值變化的特點,完成下列問題:
(1)若x1x2=4,則f(x1
=
=
f(x2)(請?zhí)顚憽埃荆?,<”號);若函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減,則在區(qū)間
(2,+∞)
(2,+∞)
上遞增;
(2)當(dāng)x=
2
2
時,f(x)=x+
4
x
,(x>0)的最小值為
4
4

(3)試用定義證明f(x)=x+
4
x
,在區(qū)間(0,2)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個命題,其中所有正確命題的序號為
①③
①③

①函數(shù)f(x)=
x2-2x
+2
x2-5x+4
的最小值為l+2
2
;
②已知函數(shù)f (x)=|x2-2|,若f (a)=f (b),且0<a<b,則動點P(a,b)到直線4x+3y-15=0的距離的最小值為1;
③命題“函數(shù)f(x)=xsinx+1,當(dāng)x1,x2[-
π
2
,
π
2
]
,且|x1|>|x2|時,有f (x1)>f(x2)”是真命題;
④“a=
1
0
1-x2
dx
”是函數(shù)“y=cos2(ax)-sin2(ax)的最小正周期為4”的充要條件;
⑤已知等差數(shù)列{an}的前n項和為Sn,
OA
,
OB
為不共線向量,又
OP
=a
OA
+a2012
OB
,若
PA
PB
,則S2012=2013.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個命題:其中正確命題的序號是
①②③⑤
①②③⑤

①命題“對任意x∈Rx2+x+1>0”的否定是“存在x∈Rx2+x+1≤0”
②函數(shù)f(x)=(
1
2
)x-x
1
3
在區(qū)間(0、1)上存在零點
③“a=1”是“函數(shù)y=cos2ax的最小正周期為π”的充分不必要條件
④直線x-2y+5=0與圓x2+y2=8交于A、B兩點,則|AB|=2
2

⑤若直線2ax-bx+8=0(a>0,b>0)平分圓x2+y2+4x-8y+1=0周長則
8
a
+
2
b
最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于下列命題:
①若一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上同一個數(shù)后,方差恒不變;
②滿足方程f'(x)=0的x值為函數(shù)f(x)的極值點;
③命題“p且q為真”是命題“p或q為真”的必要不充分條件;
④若函數(shù)f(x)=logax的反函數(shù)的圖象過點(-1,b),則a+2b的最小值為2
2
;
⑤點P(x,y)是曲線y2=4x上一動點,則|x+1|+
x2+(y-1)2
的最小值是
2

其中正確的命題的序號是
①④⑤
①④⑤
(注:把你認(rèn)為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們?yōu)榱颂骄亢瘮?shù) f(x)=x+
4
x
,x∈(0,+∞)
的部分性質(zhì),先列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
請你觀察表中y值隨x值變化的特點,完成以下的問題.
首先比較容易的看出來:此函數(shù)在區(qū)間(0,2)上是遞減的;
(1)函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.當(dāng)x=
2
2
時,y最小=
4
4

(2)請你根據(jù)上面性質(zhì)作出此函數(shù)的大概圖象;
(3)證明:此函數(shù)在區(qū)間上(0,2)是遞減的.

查看答案和解析>>


同步練習(xí)冊答案