△ABC的三邊長(zhǎng)為a、b、c,且同時(shí)滿足:a4=b4+c4-b2c2,b4=a4+c4-a2c2,則△ABC是( 。
A.不等邊三角形B.等邊三角形
C.直角三角形D.等腰直角三角形
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、△ABC的三邊長(zhǎng)為a、b、c,且同時(shí)滿足:a4=b4+c4-b2c2,b4=a4+c4-a2c2,則△ABC是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

△ABC的三邊長(zhǎng)為a、b、c,且同時(shí)滿足:a4=b4+c4-b2c2,b4=a4+c4-a2c2,則△ABC是( 。
A.不等邊三角形B.等邊三角形
C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

△ABC的三邊長(zhǎng)為a、b、c,且同時(shí)滿足:a4=b4+c4-b2c2,b4=a4+c4-a2c2,則△ABC是


  1. A.
    不等邊三角形
  2. B.
    等邊三角形
  3. C.
    直角三角形
  4. D.
    等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圖①和圖②均是邊長(zhǎng)為1的正方形網(wǎng)格,按要求分別在圖①、圖②中用實(shí)線畫(huà)出頂點(diǎn)在格點(diǎn)上的三角形.新畫(huà)的三角形同時(shí)滿足以下要求:
(1)都以A為一個(gè)頂點(diǎn),且所畫(huà)的三角形都與△ABC相似.
(2)所畫(huà)的三角形與△ABC相似比都不為1.
(3)圖①和圖②中新畫(huà)的三角形不全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在等邊△ABC中,點(diǎn)D為AC上一點(diǎn),連接BD,直線l與線段BA、BD、BC分別相交于點(diǎn)E、P、F,且∠BPF=60°.
(1)如圖1,寫(xiě)出圖中所有與△BDC相似的三角形,并選擇其中一對(duì)給予證明;
(2)若直線l向右平移,與線段BA、BD、BC或其延長(zhǎng)線分別相交于E、P、F,請(qǐng)?jiān)趫D2中畫(huà)出一個(gè)與圖1位置不盡相同的圖形(其它條件不變),此時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)寫(xiě)出來(lái)(不證明),若不成立,請(qǐng)說(shuō)明理由;精英家教網(wǎng)
(3)探究:如圖1,當(dāng)BD滿足什么條件時(shí)(其它條件不變),△BPE的面積是△BPF的面積的2倍?請(qǐng)寫(xiě)出探究結(jié)果,并說(shuō)明理由.(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)嘗試解決以下問(wèn)題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
FAE
FAE

又AG=AE,AF=AF
∴△GAF≌
△EAF
△EAF

GF
GF
=EF,故DE+BF=EF.
(2)運(yùn)用(1)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長(zhǎng).
(3)類(lèi)比(1)證明思想完成下列問(wèn)題:在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若△ABC固定不動(dòng),△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過(guò)程中,等式BD2+CE2=DE2始終成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在等邊△ABC中,點(diǎn)D為AC上一點(diǎn),連接BD,直線l與線段BA、BD、BC分別相交于點(diǎn)E、P、F,且∠BPF=60°.
(1)如圖1,寫(xiě)出圖中所有與△BDC相似的三角形,并選擇其中一對(duì)給予證明;
(2)若直線l向右平移,與線段BA、BD、BC或其延長(zhǎng)線分別相交于E、P、F,請(qǐng)?jiān)趫D2中畫(huà)出一個(gè)與圖1位置不盡相同的圖形(其它條件不變),此時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)寫(xiě)出來(lái)(不證明),若不成立,請(qǐng)說(shuō)明理由;
(3)探究:如圖1,當(dāng)BD滿足什么條件時(shí)(其它條件不變),△BPE的面積是△BPF的面積的2倍?請(qǐng)寫(xiě)出探究結(jié)果,并說(shuō)明理由.(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等邊△ABC中,點(diǎn)D為AC上一點(diǎn),連接BD,直線l與線段BA、BD、BC分別相交于點(diǎn)E、P、F,且∠BPF=60°.
(1)如圖1,寫(xiě)出圖中所有與△BDC相似的三角形,并選擇其中一對(duì)給予證明;
(2)若直線l向右平移,與線段BA、BD、BC或其延長(zhǎng)線分別相交于E、P、F,請(qǐng)?jiān)趫D2中畫(huà)出一個(gè)與圖1位置不盡相同的圖形(其它條件不變),此時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)寫(xiě)出來(lái)(不證明),若不成立,請(qǐng)說(shuō)明理由;
精英家教網(wǎng)

(3)探究:如圖1,當(dāng)BD滿足什么條件時(shí)(其它條件不變),△BPE的面積是△BPF的面積的2倍?請(qǐng)寫(xiě)出探究結(jié)果,并說(shuō)明理由.(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇期中題 題型:解答題

在等邊△ABC中,點(diǎn)D為AC上一點(diǎn),連結(jié)BD,直線l與線段BA、BD、BC分別相交于點(diǎn)E、P、F,且∠BPF=60°。
(1)如圖1,寫(xiě)出圖中所有與△BDC相似的三角形,并選擇其中一對(duì)給予證明;
(2)若直線向右平移,與線段BA、BD、BC或其延長(zhǎng)線分別相交于E、P、F,請(qǐng)?jiān)趫D2中畫(huà)出一個(gè)與圖1位置不盡相同的圖形(其它條件不變),此時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)寫(xiě)出來(lái)(不證明),若不成立,請(qǐng)說(shuō)明理由;
(3)探究:如圖1,當(dāng)BD滿足什么條件時(shí)(其它條件不變),△BPE的面積是△BPF的面積的2倍?請(qǐng)寫(xiě)出探究結(jié)果,并說(shuō)明理由。(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省佛山市南海區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

請(qǐng)嘗試解決以下問(wèn)題:
(1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠______.
又AG=AE,AF=AF
∴△GAF≌______.
∴______=EF,故DE+BF=EF.
(2)運(yùn)用(1)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長(zhǎng).
(3)類(lèi)比(1)證明思想完成下列問(wèn)題:在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若△ABC固定不動(dòng),△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過(guò)程中,等式BD2+CE2=DE2始終成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案