中心在原點(diǎn),且過(0,3)的等軸雙曲線方程為( 。
A.x2-y2=9B.y2-x2=9C.x2-y2=±9D.y2-x2=18
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、中心在原點(diǎn),且過(0,3)的等軸雙曲線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中心在原點(diǎn),且過(0,3)的等軸雙曲線方程為( 。
A.x2-y2=9B.y2-x2=9C.x2-y2=±9D.y2-x2=18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年高二(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

中心在原點(diǎn),且過(0,3)的等軸雙曲線方程為( )
A.x2-y2=9
B.y2-x2=9
C.x2-y2=±9
D.y2-x2=18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

中心在原點(diǎn),且過(0,3)的等軸雙曲線方程為


  1. A.
    x2-y2=9
  2. B.
    y2-x2=9
  3. C.
    x2-y2=±9
  4. D.
    y2-x2=18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求中心在原點(diǎn),焦點(diǎn)在x軸上,焦距等于4,且經(jīng)過點(diǎn)P(3,-2
6
)的橢圓方程;
(2)求e=
6
3
,并且過點(diǎn)(3,0)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年廣東省高二第二學(xué)期3月月考數(shù)學(xué)文卷 題型:解答題

(14分)

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京四中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省吉安市井岡山實(shí)驗(yàn)學(xué)校高二(下)第四次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市麻城實(shí)驗(yàn)高中高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案