函數(shù)F(x)=xf(x)(x∈R)在(-∞,0)上是減函數(shù),且f(x)是奇函數(shù),則對任意實數(shù)a,下列不等式成立的是( 。
A.F(-
3
4
)≤F(a2-a+1)
B.F(-
3
4
)≥F(a2-a+1)
C.F(-
3
4
)<F(a2-a+1)
D.F(-
3
4
)>F(a2-a+1)
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)F(x)=xf(x)(x∈R)在(-∞,0)上是減函數(shù),且f(x)是奇函數(shù),則對任意實數(shù)a,下列不等式成立的是( 。
A、F(-
3
4
)≤F(a2-a+1)
B、F(-
3
4
)≥F(a2-a+1)
C、F(-
3
4
)<F(a2-a+1)
D、F(-
3
4
)>F(a2-a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)F(x)=xf(x)(x∈R)在(-∞,0)上是減函數(shù),且f(x)是奇函數(shù),則對任意實數(shù)a,下列不等式成立的是( 。
A.F(-
3
4
)≤F(a2-a+1)
B.F(-
3
4
)≥F(a2-a+1)
C.F(-
3
4
)<F(a2-a+1)
D.F(-
3
4
)>F(a2-a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省荊門市龍泉中學(xué)高三數(shù)學(xué)綜合訓(xùn)練09(理科)(解析版) 題型:選擇題

函數(shù)F(x)=xf(x)(x∈R)在(-∞,0)上是減函數(shù),且f(x)是奇函數(shù),則對任意實數(shù)a,下列不等式成立的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

函數(shù)F(x)=xf(x)(x∈R)在(-∞,0)上是減函數(shù),且f(x)是奇函數(shù),則對任意實數(shù)a,下列不等式成立的是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),f(-1)=0,且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則
2010
k=0
f(
k
2
)
的值是
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省鳳陽藝榮高考輔導(dǎo)學(xué)校高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=lnx
(Ⅰ)若函數(shù)f(x)圖象上任意一點處的切線的傾斜角均不小于,求實數(shù)m的取值范圍;
(Ⅱ)設(shè)m=2,若存在x∈[1,2],不等式|a+3x|-xf′(x)<0成立,求實數(shù)a的取值范圍;
(III)已知k∈R,討論關(guān)于x的方程f(x)+mx=在區(qū)間[2,4]上的實根個數(shù)(e≈2.71828)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省鳳陽藝榮高考輔導(dǎo)學(xué)校高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=lnx
(Ⅰ)若函數(shù)f(x)圖象上任意一點處的切線的傾斜角均不小于,求實數(shù)m的取值范圍;
(Ⅱ)設(shè)m=2,若存在x∈[1,2],不等式|a+3x|-xf′(x)<0成立,求實數(shù)a的取值范圍;
(III)已知k∈R,討論關(guān)于x的方程f(x)+mx=在區(qū)間[2,4]上的實根個數(shù)(e≈2.71828)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省鹽城中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)f(x)是定義在R上的可導(dǎo)函數(shù),且滿足f(x)+xf′(x)>0.則不等式的解集為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇州市常熟市高三(上)10月段考數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)f(x)是定義在R上的可導(dǎo)函數(shù),且滿足f(x)+xf′(x)>0.則不等式的解集為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

設(shè)f(x)是定義在R上的可導(dǎo)函數(shù),且滿足f(x)+xf′(x)>0.則不等式的解集為   

查看答案和解析>>


同步練習(xí)冊答案