分?jǐn)?shù)單位為
17
的所有最簡真分?jǐn)?shù)的和是
 
分析:分?jǐn)?shù)單位為
1
7
的所有最簡真分?jǐn)?shù)有
1
7
2
7
、
3
7
、
4
7
、
5
7
、
6
7
,把它們加起來,即可得解.
解答:解:
1
7
+
2
7
+
3
7
+
4
7
+
5
7
+
6
7
=
1+2+3+4+5+6
7
=
21
7
=3;
答:分?jǐn)?shù)單位為
1
7
的所有最簡真分?jǐn)?shù)的和是3;
故答案為:3.
點評:此題主要利用分?jǐn)?shù)的意義、分?jǐn)?shù)單位、最簡真分?jǐn)?shù)來解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

問題:在下面括號里填上適當(dāng)?shù)淖匀粩?shù),使等式成立.
1
6
=
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )
=.
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )

分析:把
1
6
表示成兩個單位分?jǐn)?shù)(分子為1的分?jǐn)?shù))的和,可以這樣考慮:若兩個加數(shù)相同,則
1
6
=
1×2
6×2
=
1
12
+
1
12
;
若兩個加數(shù)不相同,可利用分?jǐn)?shù)的基本性質(zhì)將分?jǐn)?shù)的分子、分母擴(kuò)大相同的倍數(shù),再將分子拆成兩個自然數(shù)的和,即:
1
6
=
1×A
6×A
=
B+C
6A
=
B
6A
+
C
6A
(A=B+C,A、B、C是自然數(shù)),若B、C是6的約數(shù),則
B
6A
C
6A
可以化成單位分?jǐn)?shù).
所以
1
6
=
1
12
+
1
12
=
1
15
+
1
10
=
1
18
+
1
9
=
1
24
+
1
8
=
1
42
+
1
7
;
根據(jù)對上述材料的理解完成下列各題:
(1)在下面括號里填上相同的自然數(shù),使等式成立
1
10
=
1
(   )
+
1
(   )

(2)已知
1
10
=
1
A
+
1
B

(A、B是不相等的自然數(shù))求所有滿足條件A、B的值.(直接寫出答案).

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源:不詳 題型:解答題

問題:在下面括號里填上適當(dāng)?shù)淖匀粩?shù),使等式成立.
1
6
=
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )
=.
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )

分析:把
1
6
表示成兩個單位分?jǐn)?shù)(分子為1的分?jǐn)?shù))的和,可以這樣考慮:若兩個加數(shù)相同,則
1
6
=
1×2
6×2
=
1
12
+
1
12

若兩個加數(shù)不相同,可利用分?jǐn)?shù)的基本性質(zhì)將分?jǐn)?shù)的分子、分母擴(kuò)大相同的倍數(shù),再將分子拆成兩個自然數(shù)的和,即:
1
6
=
1×A
6×A
=
B+C
6A
=
B
6A
+
C
6A
(A=B+C,A、B、C是自然數(shù)),若B、C是6的約數(shù),則
B
6A
C
6A
可以化成單位分?jǐn)?shù).
所以
1
6
=
1
12
+
1
12
=
1
15
+
1
10
=
1
18
+
1
9
=
1
24
+
1
8
=
1
42
+
1
7
;
根據(jù)對上述材料的理解完成下列各題:
(1)在下面括號里填上相同的自然數(shù),使等式成立
1
10
=
1
(   )
+
1
(   )

(2)已知
1
10
=
1
A
+
1
B

(A、B是不相等的自然數(shù))求所有滿足條件A、B的值.(直接寫出答案).

查看答案和解析>>

同步練習(xí)冊答案