【題目】旺財(cái)水果店每天都會(huì)進(jìn)一些草莓銷售,在一周銷售過(guò)程中他發(fā)現(xiàn)每天的銷售量y(單位:千克)會(huì)隨售價(jià)x(單位:元/千克)而變化,部分?jǐn)?shù)據(jù)記錄如表
售價(jià)x(單位:元/千克) | 30 | 25 | 20 |
每天銷售量y(單位:千克) | 5 | 55 | 105 |
如果已知草莓每天銷量y與售價(jià)x(30.5>x>14)滿足一次函數(shù)關(guān)系.
(1)請(qǐng)根據(jù)表格中數(shù)據(jù)求出這個(gè)一次函數(shù)關(guān)系式;
(2)如果進(jìn)價(jià)為14元/千克,請(qǐng)判斷售價(jià)分別定為20元/千克和25元/千克,哪天的銷售利潤(rùn)更高?
【答案】(1)y=﹣10x+305;(2)當(dāng)售價(jià)為20元/千克時(shí)的銷售利潤(rùn)更高.
【解析】
(1)根據(jù)每天的銷量y與售價(jià)x之間滿足一次函數(shù)的關(guān)系,設(shè)設(shè)這個(gè)一次函數(shù)的解析式為y=kx+b,再將x= 30,y=5;x= 25,y=55帶入,利用待定系數(shù)法即可解出;
(2)將售價(jià)為20元/千克和25元/千克帶入一次函數(shù),比較兩個(gè)不同售價(jià)的銷售利潤(rùn)即可得出答案.
(1)設(shè)這個(gè)一次函數(shù)的解析式為y=kx+b,
,得,
即這個(gè)一次函數(shù)的解析式為y=﹣10x+305;
(2)當(dāng)進(jìn)價(jià)為14元/千克,售價(jià)為20元/千克時(shí),利潤(rùn)為:(20﹣14)×(﹣10×20+305)=630(元),
當(dāng)進(jìn)價(jià)為14元/千克,售價(jià)為25元/千克時(shí),利潤(rùn)為:(25﹣14)×(﹣10×25+305)=605(元),
∵630>605,
∴當(dāng)售價(jià)為20元/千克時(shí)的銷售利潤(rùn)更高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊△ABC的邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,你能發(fā)現(xiàn)AF與BD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;
(2)類比猜想:如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABC邊BA的延長(zhǎng)線時(shí),其他作法與(1)相同,猜想AF與BD在(1)中的結(jié)論是否仍然成立?
(3)深入探究:Ⅰ.如圖③,當(dāng)動(dòng)點(diǎn)D在等邊△ABC邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與B不重合),連接DC,以DC為邊在BC上方和下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′,探究AF,BF′與AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;Ⅱ.如圖④,當(dāng)動(dòng)點(diǎn)D在等邊△ABC的邊BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是等腰直角三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰Rt△PCQ,∠PCQ=90°.探究并解決下列問(wèn)題:
(1)如圖1,若點(diǎn)P在線段AB上,且AC=1+,PA=,求線段PC的長(zhǎng).
(2)如圖2,若點(diǎn)P在AB的延長(zhǎng)線上,猜想PA2、PB2、PC2之間的數(shù)量關(guān)系,并證明.
(3)若動(dòng)點(diǎn)P滿足,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為矩形ABCD對(duì)角線AC,BD的交點(diǎn),AB=9,AD=18,M,N是直線BC上的動(dòng)點(diǎn),且MN=3,則OM+ON最小值=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在北京舉行,本屆論壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷往“一帶一路”沿線國(guó)家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬(wàn)元,則至少銷售甲種商品多少萬(wàn)件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批自行車. 男式自行車價(jià)格為元/輛,女式自行車價(jià)格為元/輛,要求男式自行車比女式單車多輛,設(shè)購(gòu)進(jìn)女式自行車輛,購(gòu)置總費(fèi)用為元.
(1)求購(gòu)置總費(fèi)用(元)與女式單車(輛)之間的函數(shù)關(guān)系式;
(2)若兩種自行車至少需要購(gòu)置輛,且購(gòu)置兩種自行車的費(fèi)用不超過(guò)元,該商場(chǎng)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①abc>0;②4ac﹣b2<0;③4a+c<2b;④3b+2c<0;⑤m(am+b)+b<a(m≠﹣1).其中結(jié)論正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)正方形ABCD,E、F分別在邊BC、CD上(不與端點(diǎn)重合),∠EAF=45°,EF與AC交于點(diǎn)G
①如圖(i),若AC平分∠EAF,直接寫出線段EF,BE,DF之間等量關(guān)系;
②如圖(ⅱ),若AC不平分∠EAF,①中線段EF,BE,DF之間等量關(guān)系還成立嗎?若成立請(qǐng)證明;若不成立請(qǐng)說(shuō)明理由
(2)如圖(ⅲ),矩形ABCD,AB=4,AD=8.點(diǎn)M、N分別在邊CD、BC上,AN=2,∠MAN=45°,求AM的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里
-4, , , 0, -3.14, 717, -(+5) +1.88,
(1)正有理數(shù)集合:{_____________________________…}
(2)負(fù)數(shù)集合:{_____________________________…}
(3)整數(shù)集合:{_____________________________ …}
(4)分?jǐn)?shù)集合:{______________________________…}
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com