【題目】如圖,A城氣象臺測得臺風中心在A城正西方向600km的B處,以每小時200km的速度向北偏東60°的方向移動,距臺風中心500km的范圍內(nèi)是受臺風影響的區(qū)域.
(1)A城是否受到這次臺風的影響?為什么?
(2)若A城受到這次臺風的影響,那么A城遭受這次臺風影響有多長時間?
【答案】(1)A城受到臺風的影響;(2)4.
【解析】
(1)點到直線的線段中垂線段最短,故應由A點向BC作垂線,垂足為M,若AM>500則A城不受影響,否則受影響;
(2)點A到直線BC的長為500千米的點有兩點,分別設為D、G,則△ADG是等腰三角形,由于AM⊥BC,則M是DG的中點,在Rt△ADM中,解出MD的長,則可求DG長,在DG長的范圍內(nèi)都是受臺風影響,再根據(jù)速度與距離的關系則可求時間.
解:
(1)A城受到這次臺風的影響,
理由:由A點向BC作垂線,垂足為M,
在Rt△ABM中,∠ABM=30°,AB=600km,則AM=300km,
因為300<500,所以A城要受臺風影響;
(2)設BC上點D,DA=500千米,則還有一點G,有
AG=500千米.
因為DA=AG,所以△ADG是等腰三角形,
因為AM⊥BC,所以AM是DG的垂直平分線,MD=GM,
在Rt△ADM中,DA=500千米,AM=300千米,
由勾股定理得,MD==400(千米),
則DG=2DM=800千米,
遭受臺風影響的時間是:t=800÷200=4(小時),
答:A城遭受這次臺風影響時間為4小時.
科目:初中數(shù)學 來源: 題型:
【題目】利用我們學過的知識,可以導出下面這個形式優(yōu)美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2],該等式從左到右的變形,不僅保持了結構的對稱性,還體現(xiàn)了數(shù)學的和諧、簡潔、美觀.
(1)請你檢驗說明這個等式的正確性.
(2)若a=2019,b=2020,c=2021,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值嗎?
(3)若a﹣b=,b﹣c=,且a2+b2+c2=1,求ab+bc+ac的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+∠B=∠C+∠D
(簡單應用)
(2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度數(shù)(可直接使用問題(1)中的結論)
(問題探究)
(3)如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,則∠P的度數(shù)為
(拓展延伸)
(4)在圖4中,若設∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關系為 (用x、y表示∠P)
(5)在圖5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P與∠A、∠C的關系,直接寫出結論 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AH是⊙O的直徑,AE平分∠FAH,交⊙O于點E,過點E的直線FG⊥AF,垂足為F,B為半徑OH上一點,點E,F(xiàn)分別在矩形ABCD的邊BC和CD上.
(1)求證:直線FG是⊙O的切線;
(2)若CD=10,EB=5,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線分別交x軸,y軸于A,B兩點,點C為OB的中點,點D在第二象限,且四邊形AOCD為矩形(有一個角是直角的平行四邊形).
(1)直接寫出點A,B的坐標,并求直線AB與CD交點E的坐標;
(2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時動點N從點A出發(fā),沿線段AO以每秒1個單位長度的速度向終點O運動,過點P作PHOA,垂足為H,連接NP.設點P的運動時間為t秒.
①若△NPH的面積為1,求t的值;
②點Q是點B關于點A的對稱點,問BPPHHQ是否有最小值,如果有,直接寫出相應的點P的坐標;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年11月的最后一個星期四是感恩節(jié),小龍調(diào)查了初三年級部分同學在感恩節(jié)當天將以何種方式表達感謝幫助過自己的人.他將調(diào)查結果分為如下四類:A類﹣﹣當面致謝;B類﹣﹣打電話;C類﹣﹣發(fā)短信息或微信;D類﹣﹣寫書信.他將調(diào)查結果繪制成如圖不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
請你根據(jù)圖中提供的信息完成下列各題:
(1)補全條形統(tǒng)計圖;
(2)在A類的同學中,有3人來自同一班級,其中有1人學過主持.現(xiàn)準備從他們3人中隨機抽出兩位同學主持感恩節(jié)主題班會課,請你用樹狀圖或表格求出抽出的兩人都沒有學過主持的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正三角形ABC中,D,E,F(xiàn)分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,則△DEF的面積與△ABC的面積之比等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點E,F分別在AB,CD上,AF⊥CE,垂足為點O,∠1=∠B,
∠A+∠2=90°.求證:AB∥CD.
證明:如圖,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,兩直線平行)
______________
∴∠AFC+∠2=90°(等式性質(zhì))
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(內(nèi)錯角相等,兩直線平行)
請你仔細觀察下列序號所代表的內(nèi)容:
①∴∠AOE=90°(垂直的定義)
②∴∠AFB=90°(等量代換)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定義)
⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)
橫線處應填寫的過程,順序正確的是( 。
A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com