【題目】(問題背景)

1)如圖1的圖形我們把它稱為“8字形”,請說理證明∠A+B=∠C+D

(簡單應用)

2)如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC28°,∠ADC20°,求∠P的度數(shù)(可直接使用問題(1)中的結論)

(問題探究)

3)如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A30°,∠C18°,則∠P的度數(shù)為   

(拓展延伸)

4)在圖4中,若設∠Cx,∠By,∠CAPCAB,∠CDPCDB,試問∠P與∠C、∠B之間的數(shù)量關系為   (用x、y表示∠P

5)在圖5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P與∠A、∠C的關系,直接寫出結論   

【答案】1)證明見解析;(224°;(324°;(4)∠P=x+y;(5)∠P=

【解析】

1)根據(jù)三角形內角和為180°,對頂角相等,即可證得∠A+B=C+D

2)由(1)的結論得:∠BCP+P=BAP+ABC①,∠PAD+P=PCD+ADC②,將兩個式子相加,已知AP、CP分別平分∠BAD、∠BCD,可得∠BAP=PAD,∠BCP=PCD,可證得∠P=(ABC+ADC),即可求出∠P度數(shù).

3)已知直線BP平分∠ABC的外角∠FBCDP平分∠ADC的外角∠ADE,可得∠1=2,∠3=4,由(1)的結論得:∠C+180°-3=P+180°-1,∠A+4=P+2,兩式相加即可求出∠P的度數(shù).

4)由(1)的結論得:CAB+C=P+CDB,CAB+P=B+CDB,第一個式子乘以3,得到的式子減去第二個式子即可得出用x、y表示∠P

5)延長ABDP于點F,標注出∠1,∠2,∠3,∠4,由(1)的結論得:∠A+21=C+180°-23,其中根據(jù)對頂角相等,三角形內角和,以及外角的性質即可得到∠1=PBF=180°-BFP-P=180°-(A+3)-P,代入∠A+21=C+180°-23,即可得出∠P與∠A、∠C的關系.

1)如圖1,

A+B+AOB=C+D+COD=180°

∵∠AOB=COD

∴∠A+B=C+D

2)∵AP、CP分別平分∠BAD、∠BCD

∴∠BAP=PAD,∠BCP=PCD,

由(1)的結論得:∠BCP+P=BAP+ABC①,∠PAD+P=PCD+ADC

+②,得2P+PAD+BCP=BAP+ABC +PCD+ADC

∴∠P=(ABC+ADC)

∴∠ABC28°,∠ADC20°

∴∠P=(28°+20°)

∴∠P=24°

故答案為:24°

3)∵如圖3,直線BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,

∴∠1=2,∠3=4

由(1)的結論得:∠C+180°-3=P+180°-1①,∠A+4=P+2

+②,得∠C+180°-3+A+4=P+180°-1+P+2

30°+18°=2P

∴∠P=24°

故答案為:24°

4)由(1)的結論得:CAB+C=P+CDB①,CAB+P=B+CDB

①×3,得CAB+3C=3P+CDB

-③,得∠P-3x=y-3P

∴∠P=x+y

故答案為:∠P=x+y

5)如圖5所示,延長ABDP于點F

由(1)的結論得:∠A+21=C+180°-23

∵∠1=PBF=180°-BFP-P=180°-(A+3)-P

∴∠A+360°-2A-23-2P=C+180°-23

解得:∠P=

故答案為:∠P=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形紙片ABCD的邊長為2,∠ABC=60°,翻折∠B,∠D,使點B,D兩點重合于對角線BD上一點P,EF,GH分別是折痕(如圖2).設AE=x(0<x<2),給出下列判斷:
①當x=1時,點P是菱形ABCD的中心;
②當x= 時,EF+GH>AC;
③當0<x<2時,六邊形AEFCHG面積的最大值是 ;
④當0<x<2時,六邊形AEFCHG周長的值不變.
其中正確結論是 . (填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可住;如果每一間客房住9人,那么就空出一間房.
(1)求該店有客房多少間?房客多少人?
(2)假設店主李三公將客房進行改造后,房間數(shù)大大增加.每間客房收費20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們如何訂房更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程組:

1

(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交ACB的平分線于點E,交ACB的外角平分線于點F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD與正三角形AEF的頂點A重合,將△AEF繞其頂點A旋轉,在旋轉過程中,當BE=DF時,∠BAE的大小可以是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有分別標有數(shù)字1,2,3,4四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次實驗先攪拌均勻.
(1)若從中任取一球,球上的數(shù)字為偶數(shù)的概率為多少?
(2)若從中任取一球(不放回),再從中任取一球,請用畫樹狀圖或列表格的方法求出兩個球上的數(shù)字之和為偶數(shù)的概率.
(3)若設計一種游戲方案:從中任取兩球,兩個球上的數(shù)字之差的絕對值為1為甲勝,否則為乙勝,請問這種游戲方案設計對甲、乙雙方公平嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A城氣象臺測得臺風中心在A城正西方向600kmB處,以每小時200km的速度向北偏東60°的方向移動,距臺風中心500km的范圍內是受臺風影響的區(qū)域.

1A城是否受到這次臺風的影響?為什么?

2)若A城受到這次臺風的影響,那么A城遭受這次臺風影響有多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形網格中,小格的頂點叫做格點。小華按下列要求作圖:①在正方形網格的三條不同的實線上各取一個格點,使其中任意兩點不在同一條實線上;②連結三個格點,使之構成直角三角形。小華在左邊的正方形網格中作出了RtABC。請你按照同樣的要求,在右邊的兩個正方形網格中各畫出一個直角三角形,并使三個網格中的直角三角形互不全等。

查看答案和解析>>

同步練習冊答案